
fiasco

Nils Bandener

fiasco ii

Copyright © CopyrightÂ©1995-1996 Nils Bandener

fiasco iii

COLLABORATORS

TITLE :

fiasco

ACTION NAME DATE SIGNATURE

WRITTEN BY Nils Bandener February 12, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

fiasco iv

Contents

1 fiasco 1

1.1 Fiasco.guide . 1

1.2 Legal Things . 2

1.3 Giftware . 3

1.4 Filelist . 3

1.5 Introduction . 5

1.6 Features . 6

1.7 News . 7

1.8 Requirements . 9

1.9 Installation . 9

1.10 Quick Start . 10

1.11 Basic elements of a Database . 11

1.12 Records . 11

1.13 Fields . 11

1.14 Mask . 12

1.15 List . 12

1.16 Stretching of the mask . 13

1.17 Editing Modes in Fiasco . 14

1.18 Record Mode . 14

1.19 Mask Mode . 14

1.20 Creating and working with a Database . 14

1.21 Creating the Mask . 15

1.22 Creating and working with Records . 16

1.23 Converting Fields . 17

1.24 Using Marks . 17

1.25 Searching in a database . 18

1.26 Patterns . 19

1.27 Blurred Search . 20

1.28 Searching with ARexx . 20

1.29 Count . 21

fiasco v

1.30 Replace . 21

1.31 Filter . 21

1.32 Alternative Data Mechanisms . 22

1.33 Relations . 22

1.34 Creating Relations . 23

1.35 Technical notes about Relations . 24

1.36 Virtual Fields . 25

1.37 Printing a Database . 26

1.38 Internal Print Function . 26

1.39 The Print Mask . 27

1.40 Print Mask Files . 28

1.41 Printing with TeX . 28

1.42 Printing with ARexx . 29

1.43 Import and Export . 30

1.44 Structure of Import/Export files . 31

1.45 How to Specify Special Characters . 32

1.46 Importing of Data . 32

1.47 Exporting of Data . 33

1.48 Fieldtypes . 34

1.49 Standard Attributes . 35

1.50 String Fieldtype . 35

1.51 Integer Fieldtype . 36

1.52 Float Fieldtype . 37

1.53 Boolean Fieldtype . 37

1.54 Cycle fieldtype . 38

1.55 Slider fieldtype . 38

1.56 Date fieldtype . 40

1.57 Time fieldtype . 40

1.58 Extern fieldtype . 41

1.59 Datatypes fieldtype . 41

1.60 Text fieldtype . 43

1.61 Button fieldtype . 43

1.62 Bar fieldtype . 44

1.63 Fiasco’s Graphic User Interface . 45

1.64 The Service Window . 45

1.65 Add . 46

1.66 Delete . 46

1.67 First . 47

1.68 Previous . 47

fiasco vi

1.69 Next . 47

1.70 Last . 48

1.71 Active project . 48

1.72 Status . 48

1.73 Fieldtype . 48

1.74 Menus . 49

1.75 Project/New . 53

1.76 Project/Erase . 53

1.77 Project/Open... 53

1.78 Project/Options... 53

1.79 Project/Statistic... 54

1.80 Project/Reload Rels . 54

1.81 Project/Save . 54

1.82 Project/Save As... 55

1.83 Project/Import... 55

1.84 Project/Export... 55

1.85 Project/Print... 56

1.86 Project/About... 56

1.87 Project/Quit . 56

1.88 Record/Add Record . 56

1.89 Record/Duplicate Record . 57

1.90 Record/Delete Record . 57

1.91 Record/Delete all Records . 57

1.92 Record/Cut Record . 58

1.93 Record/Copy Record . 58

1.94 Record/Paste Record . 59

1.95 Record/Previous . 59

1.96 Record/Next . 60

1.97 Record/First Record . 60

1.98 Record/Last Record . 61

1.99 Record/Goto... 61

1.100Record/Mark Record . 62

1.101Record/Unmark Record . 62

1.102Record/Mark all Records . 62

1.103Record/Unmark all Records . 63

1.104Record/Toggle all Marks . 63

1.105Field/Fieldtype . 64

1.106Field/Add Field... 65

1.107Field/Edit Field... 65

fiasco vii

1.108Field/Duplicate Field . 66

1.109Field/Remove Field . 66

1.110Field/Edit Relation... 66

1.111Field/Remove Relation . 67

1.112Field/Convert Field... 67

1.113List/Hide column . 67

1.114List/Show column... 68

1.115List/Show all columns . 68

1.116List/Recalc List . 68

1.117Compare/Find... 69

1.118Compare/Find next . 69

1.119Compare/Find previous . 70

1.120Compare/Replace... 70

1.121Compare/Count... 70

1.122Compare/Sort... 71

1.123Compare/Edit Filter... 71

1.124Compare/Use Filter? . 71

1.125Compare/Mark... 72

1.126Compare/Filter to Marks . 72

1.127Compare/Marks to Filter . 73

1.128Control/Record Mode . 73

1.129Control/Mask Mode . 73

1.130Control/ServiceWindow . 74

1.131Control/ListWindow . 74

1.132Control/ARexx-Debug . 74

1.133Settings/Create Icons? . 75

1.134Settings/Create Backups? . 75

1.135Settings/Write Relations? . 75

1.136Settings/Update Rels? . 75

1.137Settings/Use * as Pattern? . 76

1.138Settings/Security-Reqs? . 76

1.139Settings/Auto-Open ServiceWin? . 76

1.140Settings/Dynamic ServiceWin? . 76

1.141Settings/Talking? . 76

1.142Settings/Display... 76

1.143Settings/Editor... 77

1.144Settings/Save Settings . 77

1.145Settings/Save Settings as... 77

1.146Settings/Load Settings... 77

fiasco viii

1.147User/Edit... 78

1.148The Print Window . 78

1.149Project/Erase . 79

1.150Project/Open... 79

1.151Project/Get from Mask . 80

1.152Project/Get from List . 80

1.153Project/Save . 80

1.154Project/Save as... 80

1.155Project/Print . 80

1.156Project/Options... 81

1.157Project/Exit . 81

1.158Element/Element Type . 81

1.159Element/Add... 82

1.160Element/Edit... 82

1.161Element/Duplicate . 82

1.162Element/Remove . 83

1.163Control/Edit Head . 83

1.164Control/Edit Body . 83

1.165Control/Edit Foot . 83

1.166All Requesters . 84

1.167Field requester . 85

1.168Convert Field requester . 86

1.169Search requester . 86

1.170Replace requester . 87

1.171Count requester . 87

1.172Sort requester . 88

1.173Filter requester . 89

1.174Mark requester . 90

1.175Usermenu Requester . 90

1.176Project Options requester . 91

1.177Goto requester . 92

1.178Relation requester . 92

1.179Show column requester . 93

1.180Display Options Requester . 93

1.181Import requester . 94

1.182Export requester . 96

1.183Print Options Requester . 96

1.184Print Element Requester . 97

1.185ARexx . 97

fiasco ix

1.186ARexx and Fiasco in general . 98

1.187Index of all ARexx commands . 99

1.188F_AboutReq . 102

1.189F_ActivateField . 103

1.190F_AddFieldReq . 103

1.191F_AddRecord . 104

1.192F_ClearProject . 104

1.193F_CloseList . 105

1.194F_CloseServiceWin . 105

1.195F_ConvertField . 105

1.196F_CountRecs . 106

1.197F_CountReq . 106

1.198F_DupRec . 107

1.199F_Export . 107

1.200F_FilterReq . 108

1.201F_FindFirst . 108

1.202F_FindNext . 109

1.203F_FindPrev . 110

1.204F_FindReq . 111

1.205F_GetFieldAttributes . 111

1.206F_GetFieldCont . 112

1.207F_GetProjFullName . 113

1.208F_GetProjName . 113

1.209F_GetRecNum . 114

1.210F_GotoFirstRec . 114

1.211F_GotoNextRec . 115

1.212F_GotoLastRec . 115

1.213F_GotoPrevRec . 116

1.214F_GotoRec . 116

1.215F_GotoRecReq . 116

1.216F_Import . 117

1.217F_IsMarked . 118

1.218F_IsVirgin . 118

1.219F_LoadDTObject . 119

1.220F_Locate . 119

1.221F_LockGUI . 119

1.222F_MakeVirgin . 121

1.223F_MarkAllRecords . 121

1.224F_MarkMatch . 122

fiasco x

1.225F_MarkRecord . 122

1.226F_NewProject . 123

1.227F_OpenList . 123

1.228F_OpenProject . 124

1.229F_OpenProjectReq . 124

1.230F_OpenServiceWin . 125

1.231F_OptionsReq . 125

1.232F_Progress . 125

1.233F_Quit . 126

1.234F_RemAllRecords . 127

1.235F_RemRecord . 127

1.236F_RequestChoice . 128

1.237F_RequestField . 128

1.238F_RequestFile . 129

1.239F_RequestNumber . 129

1.240F_RequestString . 130

1.241F_ResetStatus . 130

1.242F_SaveProject . 131

1.243F_SaveProjectReq . 131

1.244F_SaveSettings . 132

1.245F_SelectProj . 132

1.246F_SetFieldCont . 133

1.247F_SetMode . 133

1.248F_SetSearchField . 134

1.249F_SetSearchPat . 134

1.250F_SetStatus . 135

1.251F_Sort . 135

1.252F_SortReq . 136

1.253F_ToggleAllMarks . 136

1.254F_UnlockGUI . 137

1.255F_UnmarkAllRecords . 137

1.256F_UnmarkRecord . 138

1.257F_UserCommand . 138

1.258F_VirtualMode . 139

1.259Example Projects . 139

1.260Addresses . 140

1.261Datatypes Demo . 140

1.262FamilyTree . 141

1.263Videos . 141

fiasco xi

1.264Picture Database . 141

1.265FAQs Database . 141

1.266All Searchpatterns . 142

1.267Relation Checklist . 143

1.268Implementation of the Clipboard support . 144

1.269Bugs . 144

1.270To do . 145

1.271How to get contact . 146

1.272Index . 146

fiasco 1 / 167

Chapter 1

fiasco

1.1 Fiasco.guide

Fiasco Release 1.2
Copyright © 1995-1996 Nils Bandener

Introduction

Requirements

Installation

Features

What‘s new ?

Quick-Start

Basic elements of a database

Creating and working with a database

Searching in a database

Alternative data mechanisms

Relations

Virtual fields

Import and Export

Printing

GUI

Fieldtypes

ARexx

fiasco 2 / 167

Example-Projects

Index

Legal Things

Giftware

my Address

Bugs

ToDo

1.2 Legal Things

Legal Things

The Program "Fiasco" and associated files, hereafter called Fiasco, are
provided "as is". No representations or warranties are made regarding to
accuracy, reliability or correctness of Fiasco, either expressed or
implied. In no case am I responsible for any damages caused by this
software.

Fiasco is not Public Domain. I reserve all rights.
Fiasco Copyright © 1995-1996 Nils Bandener.

Fiasco may be redistributed under the following conditions:

· The program package has to be complete. See the
file list
for a

complete listing of all files that comprise Fiasco 1.2.

· Fiasco may not be distributed for commercial purposes without a
written permission by the author. This includes the distribution of
Fiasco for excessively high prices. You may only charge a small fee
for media and copying. The distribution on CD-Roms is allowed, if the
price of the CD-Rom is not higher than the price of the "Fresh Fish"
CD-Roms of Fred Fish. Distribution on cover disks or cover CDs of
magazines is allowed, if the price of the magazine is less than USD 10
or DM 12 in the case of floppy disks or USD 12 or DM 16 in the case of
compact disks.

I grant herby special permission to distribute Fiasco on the "Fresh
Fish" CD-Roms, on the "Meeting Pearls" CD-Roms and on the "Aminet"
CD-Roms.

If you include Fiasco in your PD collection, coverdisk, etc. and a
copy is left over, you may feel free to send me this copy.

fiasco 3 / 167

1.3 Giftware

Giftware

Fiasco is Giftware , that means, that every User of Fiasco may
acknowledge the work I have done on Fiasco with some gift. This may be
money or any other little thing (CD-Roms, Books, etc.) or simply a
postcard (or nothing, if you think you could use your money for something
better; but please note, the ln_Pri of that is -128 ;-).

My Address is:

Nils Bandener

Dekanatsgasse 4

D-34369 Hofgeismar

Germany

1.4 Filelist

Filelist

Fiasco Release 1.2 consists of these files:

Fiasco_1.2/ARexx.info
Fiasco_1.2/ARexx/age.rexx
Fiasco_1.2/ARexx/age.rexx.info
Fiasco_1.2/ARexx/arexxprint.rexx
Fiasco_1.2/ARexx/arexxprint.rexx.info
Fiasco_1.2/ARexx/graphprint.rexx
Fiasco_1.2/ARexx/graphprint.rexx.info
Fiasco_1.2/ARexx/print.rexx
Fiasco_1.2/ARexx/print.rexx.info
Fiasco_1.2/ARexx/unlockgui.rexx
Fiasco_1.2/ARexx/unlockgui.rexx.info
Fiasco_1.2/Catalogs/Deutsch/fiasco.catalog
Fiasco_1.2/Catalogs/Italiano/fiasco.catalog
Fiasco_1.2/Databases.info
Fiasco_1.2/Databases/Addresses.info
Fiasco_1.2/Databases/Addresses/Addresses.fdb
Fiasco_1.2/Databases/Addresses/Addresses.fdb.info
Fiasco_1.2/Databases/Addresses/Countries.fdb
Fiasco_1.2/Databases/Addresses/Countries.fdb.info
Fiasco_1.2/Databases/Addresses/Labels.fpr
Fiasco_1.2/Databases/Addresses/Labels.fpr.info
Fiasco_1.2/Databases/Addresses/ListLaTeX.fpr
Fiasco_1.2/Databases/Addresses/ListLaTeX.fpr.info
Fiasco_1.2/Databases/Addresses2.info
Fiasco_1.2/Databases/Addresses2/Adressen.fdb
Fiasco_1.2/Databases/Addresses2/Adressen.fdb.info
Fiasco_1.2/Databases/Addresses2/Adressmanager-Konv.rexx
Fiasco_1.2/Databases/Addresses2/Adressmanager-Konv.rexx.info

fiasco 4 / 167

Fiasco_1.2/Databases/DatatypesDemo.info
Fiasco_1.2/Databases/DatatypesDemo/AmigaWorld.ilbm
Fiasco_1.2/Databases/DatatypesDemo/AmigaWorld.ilbm.info
Fiasco_1.2/Databases/DatatypesDemo/DatatypesDemo.fdb
Fiasco_1.2/Databases/DatatypesDemo/DatatypesDemo.fdb.info
Fiasco_1.2/Databases/DatatypesDemo/Hallelujah.8svx
Fiasco_1.2/Databases/FamilyTree.info
Fiasco_1.2/Databases/FamilyTree/families.fdb
Fiasco_1.2/Databases/FamilyTree/families.fdb.info
Fiasco_1.2/Databases/FamilyTree/persons.fdb
Fiasco_1.2/Databases/FamilyTree/persons.fdb.info
Fiasco_1.2/Databases/FAQs.info
Fiasco_1.2/Databases/FAQs/FAQS.fdb
Fiasco_1.2/Databases/FAQs/FAQS.fdb.info
Fiasco_1.2/Databases/FAQs/RunMost.rexx
Fiasco_1.2/Databases/FAQs/scantxtdir.rexx
Fiasco_1.2/Databases/FAQs/searchfaqs.rexx
Fiasco_1.2/Databases/FAQs/showtxt.rexx
Fiasco_1.2/Databases/GraphDemo.info
Fiasco_1.2/Databases/GraphDemo/Fragments.fdb
Fiasco_1.2/Databases/GraphDemo/Fragments.fdb.info
Fiasco_1.2/Databases/PD-Disks.info
Fiasco_1.2/Databases/PD-Disks/Disks.fdb
Fiasco_1.2/Databases/PD-Disks/Disks.fdb.info
Fiasco_1.2/Databases/PD-Disks/DisksLaTeX.fpr
Fiasco_1.2/Databases/PD-Disks/DisksLaTeX.fpr.info
Fiasco_1.2/Databases/PD-Disks/ReadFish.rexx
Fiasco_1.2/Databases/PD-Disks/ReadFish.rexx.info
Fiasco_1.2/Databases/PictureDatabase.info
Fiasco_1.2/Databases/PictureDatabase/Pictures.fdb
Fiasco_1.2/Databases/PictureDatabase/Pictures.fdb.info
Fiasco_1.2/Databases/PictureDatabase/scandir.rexx
Fiasco_1.2/Databases/PictureDatabase/showscr.rexx
Fiasco_1.2/Databases/Videos.info
Fiasco_1.2/Databases/Videos/CalcLen.rexx
Fiasco_1.2/Databases/Videos/Movies.fdb
Fiasco_1.2/Databases/Videos/Movies.fdb.info
Fiasco_1.2/Databases/Videos/Tapes.fdb
Fiasco_1.2/Databases/Videos/Tapes.fdb.info
Fiasco_1.2/Development.info
Fiasco_1.2/Development/fiasco.cd
Fiasco_1.2/Development/fiasco.cd.info
Fiasco_1.2/Development/fiasco.ct
Fiasco_1.2/Development/fiasco.ct.info
Fiasco_1.2/Development/Locale.readme
Fiasco_1.2/Development/Locale.readme.info
Fiasco_1.2/Documentation.info
Fiasco_1.2/Documentation/Deutsch.info
Fiasco_1.2/Documentation/Deutsch/fiasco.dvi
Fiasco_1.2/Documentation/Deutsch/Fiasco.dvi.info
Fiasco_1.2/Documentation/Deutsch/fiasco.guide
Fiasco_1.2/Documentation/Deutsch/Fiasco.guide.info
Fiasco_1.2/Documentation/English.info
Fiasco_1.2/Documentation/English/Fiasco.dvi
Fiasco_1.2/Documentation/English/Fiasco.dvi.info
Fiasco_1.2/Documentation/English/Fiasco.guide
Fiasco_1.2/Documentation/English/Fiasco.guide.info

fiasco 5 / 167

Fiasco_1.2/Fiasco
Fiasco_1.2/Fiasco.info
Fiasco_1.2/gtlayout.library
Fiasco_1.2/icons/ARexx.info
Fiasco_1.2/icons/ARexxScript.info
Fiasco_1.2/icons/Databases.info
Fiasco_1.2/icons/def_FiascoPrint.info
Fiasco_1.2/icons/Documentation.info
Fiasco_1.2/icons/Drawer.info
Fiasco_1.2/icons/Fiasco.dvi.info
Fiasco_1.2/icons/Fiasco.guide.info
Fiasco_1.2/icons/Fiasco.info
Fiasco_1.2/icons/FiascoProject.info
Fiasco_1.2/icons/XPort.info
Fiasco_1.2/icons/XPortData.info
Fiasco_1.2/Install.info
Fiasco_1.2/Install/Deutsch.info
Fiasco_1.2/Install/English.info
Fiasco_1.2/Install/Install
Fiasco_1.2/Libs/MC68020.info
Fiasco_1.2/Libs/MC68020/gtlayout.library
Fiasco_1.2/XPort.info
Fiasco_1.2/XPort/mpearls_III_findpeals.fxp
Fiasco_1.2/XPort/mpearls_III_findpeals.fxp.info
Fiasco_1.2/XPort/RFF.fxp
Fiasco_1.2/XPort/RFF.fxp.info
Fiasco_1.2/XPort/StdTwist.fxp
Fiasco_1.2/XPort/StdTwist.fxp.info

1.5 Introduction

Introduction

Fiasco is a Database for the Amiga. I originally wanted to write a simple
Program that could test one’s English or Latin vocabulary. I later
implemented the ability to define more than two fields (answer and
question). The program continued to developed and finally became very
similar to a database program. I only needed to make minor changes and
there it was! Fiasco is now powerful, many featured program.

Basically there is little difference between Fiasco and other
database programs. Although Fiasco does not support hierarchical
structures (as AmigaBase does), it does support relations . Fiasco also
has an ARexx interface that can be used to control Fiasco from other
Programs or for assigning ARexx scripts to fields within a Fiasco
database.

Fiascos’s "mask" is not defined by a graphic file -- it is created
using internal images and any non-proportional font. Fiasco provides a
numver of field types. My personal favorite is the datatypes fieldtype
which can be used to display graphics, animations, texts etc. directly in
the

Mask

fiasco 6 / 167

.

"
Lists
" are a second way to display data. A list is much like the

mask fully configurable. However, you cannot use a list to modify data.

The
searchsystem
of Fiasco supports "blurred" search and patterns. A

"blurred" search tests for similarity between entries rather than
equality. Fiasco’s "similarity" threshold can be easily adjusted.

In addition, there are sort-, filter- and count-functions, which are
related to the search system.

1.6 Features

Features

Fiasco has the following capabilities:

· Several projects may be in RAM at the same time. The number of
these projects is only limited by the available RAM.

· Masks can be used like any other GUI.

· Masks, lists and requesters are fully font sensitive.

· Many fieldtypes: String, Integer, Float, Cycle, Boolean, Slider, Date,
Time, Extern and Datatypes.

· Datatypes fields can be used to display graphics etc. directly in the
mask.

· ARexx interface for external control and scripts for fields.

· Freely configurable "usermenu", which can be used to invoke CLI and
ARexx Programs.

· Searching allows "blurred" search and patterns.

· Very flexible list, which supports hiding and resizing of entries

· Easy relation handling

· Import and export of Databases

· Flexible print function

fiasco 7 / 167

1.7 News

News

Features added in Fiasco 1.2:

· Flexible print function.

· The internal sort function can sort records in relation to several
fields rather than one.

· Bars for designing mask.

· F_SetFieldCont and F_GetFieldCont now have a record argument.

· New ARexx command: F_RequestField.

· Can save status windows in project file and restore it after loading.

Bugs fixed in Fiasco 1.2:

· Fiasco 1.1 crashed with an address error on Amigas with 68000/68010
processors.

· If the datatypes attribute Display filename was inactive, some text
fields could simply disappear.

· If a datatypes field was positioned by Fiasco in an negative region,
its contents might appear anywhere in the window. For now, those
datatypes fields are not displayed.

· Search, count, etc. did not work with date and time fields.

· List sometimes left graphical garbage.

· Import/View did not work properly.

· After adding a field to a database which alreay contains records, the
new entries will contain the init cont. Fiasco 1.0/1.1 left these
fields empty or zero.

· F_SetFieldCont did not work for slider fields.

Features added in Fiasco 1.1:

· You may convert the field type of a field. E.g. you may convert a
string field to a cycle field, whose labels correspondent to the old
string contents.

· Import/Export of data.

· Read Only-field attribute.

· Virtual fields

fiasco 8 / 167

· Fiasco can be run on its own screen.

· Fiasco detects itself in the system and will not start itself twice.

· Less memory fragmentation by using pools.

· Records may be marked.

· Extern and Datatypes fields may be now edited using file requesters.

· Datatypes fields support "Save" and deferred loading

· Datatypes fields display their messages in themselves

· Changes in the range of the labels for a cycle field don‘t affect the
real contents anymore

· Button fields

· Relations are much faster!

· The requesters are created using gtlayout.library by Olaf Barthel

· Old ARexx commands extended and new added.

· Fiasco can talk to you

· The string fields in the mask cycle after Enter

· If Amiga OS 3.0 is available, Fiasco increases the size of the
file-buffer when it reads or saves a project.

· The ARexx interface examines the arguments using ReadArgs() of the
dos.library

· ARexx-Debug displays more information and has a help-button

· Documentation in dvi format for printed manuals

· A editor may be called from fieldreqs to edit ARexx scripts.

· Better pattern matching

· Support of clipboard

Bugs fixed in Fiasco 1.1:

· Usermenu did not allow to move entries in the list.

· Didn‘t close workbench.library

· Listwindow did not update the up/down-scrollbar if records were added

· Did not use the information about the font for the mask in the
settings file.

fiasco 9 / 167

· F_GetFieldCont and F_SetFieldCont could not be used for Float, Date,
Time, Extern and Datatypes fields.

· Sometimes incorrectoy erased the graphic of fields.

· Crashed if you select Mask-Mode twice.

· Open in the mask mode did not activate the field under the cursor

· If you activated a project in mask mode, the service window was not
updated.

· The options requester did not update the service window.

1.8 Requirements

Requirements

The minimum requirements are an Amiga with OS 2.04 (37.175) and 1 MB RAM.
Recommended configuration: Amiga with OS 3.x (39.x or higher), 68020
Processor, 2 MB RAM and a Hard Disk.

Features and required OS-Versions:
Localization: Amiga OS 2.1 (38.x)
Screenmode-Requester: Amiga OS 2.1 (38.x)
Online-Help: Amiga OS 3.0 (39.x) or amigaguide.library v34 from FD
Datatypes-Fields: Amiga OS 3.0 (39.x)
Faster project-loading: Amiga OS 3.0 (39.x)

Fiasco 1.1 uses the gtlayout.library by Olaf Barthel for its GUI.
The library is included in the archive of Fiasco.

The memory pool functions of Amiga OS 3.0 and Amiga OS 3.1 do not
free unused puddles until the pool is deleted. Use SetPatch 40.16
(already included in WB 40.42) to fix this. If you use Amiga OS 2.0 or
Amiga OS 2.1 you do not have to worry about that.

1.9 Installation

Installation

If you have the Installer program from Commodore simply doubleclick on
the install icon of your preferred language in the install drawer. You
then will be given step-by-step instructions.

If you don‘t own the Commodore Installer, you may simply drag the
Fiasco drawer somewhere you want. You may copy the catalogs to
locale:catalogs, but they will work at this place, too. You may delete
the unused languages in "Documentation" and drag the remaining files in

fiasco 10 / 167

the parent drawers. The files in "Development" and "Install" are not
required for normal operation of Fiasco and may be deleted, too. With
this configuration, Fiasco will run. If you have a 68020 processor or
better, you should delete the file gtlayout.library in the main directory
of Fiasco. Then, you should copy the gtlayout.library from the directory
libs/68020 into the main directory. If you want to make the
gtlayout.library accessible for all programs, you should copy it into the
libs: directory.

1.10 Quick Start

Quick Start

These are the most important things, which you have to know while working
with Fiasco:

· The program may be started over the Program- or Projecticon

· There are two working-modes: In the record mode you may edit records,
search for them etc. The mask mode allows you to add or modify fields.
You may control the modes using the menuitems

Control/RecordMode
and

Control/MaskMode
· The
service window
makes certain operations easier, especially if you

are not familiar with menu shortcuts. You may open it over

Control/ServiceWin
. Attention: The functions of the gadgets differ in

the different modes.

· A
list
, which can be opened with
Control/ListWin
, may be changed by

clicking in the titles of the list. Clicking one time activates the
column. Using the menu List you can do several things with this
column. If you click at the right border of a title, you can size the
column. The other space can be used to drag the column to any other
place in the list.

· Certain project options may be changed with the menuitem

Project/Options
· If you have any problems, you may press the help key while ←↩

browsing
through the menu.

fiasco 11 / 167

1.11 Basic elements of a Database

Basic elements of a Database

Basically, most databases are analogous to a card file.

A Fiasco database project consists of two components: First, there is
the data which is divided into records. Second, there is the mask which
defines the structure of the data.

The following pages describe the basics of databases in general and
the basic Fiasco-specific principles.

Records

Fields

Mask

List

1.12 Records

Records

Records are the file cards of a database. That means a record is a
collection of several data items for one main item (e.g. for a person
name, address, etc.). In Fiasco the

mask
is only able to display one

record at a time. The
list
displays several records as lines.

1.13 Fields

Fields

Fields define what data may be stored. In Fiasco the fields are defined
in the mask. Fields are the basic elements of the mask and the list.

Fiasco supports several types of fields. More information on the
field types and their features are located in the

field types
chapter.

fiasco 12 / 167

1.14 Mask

Mask

The mask is the way to display data, which Fiasco uses most of the time.
A mask, in constarst to a

list
, can display only one record. The

advantage of the mask is the clarity of the display. In the card file
example, the mask defines the structure of the file cards.

The mask consists of fields of which there are several types and
images.

If you use normal Amiga programs, you would call these fields
"gadgets". Internally, Fiasco uses gadgets (from the gadtools.library)
as fields.

Fiasco masks adjust automatically to any non-proportional font. Topaz
and courier are examples of non-proportional fonts.

To create a mask in Fiasco you have to be in the mask mode. You may
change the position of existing fields using the mouse or make other
changes with the Field menu. More on this topic

here
.

1.15 List

List

Control/ListWindow
opens a window, which displays the records in a list.

The records are represented by lines, while the fields of a record are
represented by columns. The first line of a list shows the IDs of each
field. If the window is not big enough to display the whole list you may
use the scrollbars in the right and in the bottom borders of the window
to scroll through the list. The line of the current record is marked
using a backfill.

You can select records using the list. Simply click on the line of a
record. Changes to the record can only made in the mask.

If a
Filter
is active a list displays only the matching records.

Marked records

fiasco 13 / 167

are displayed with a thin backfill.

The layout of a list is normally done automatically. Positions and
dimensions of the fields in the mask will be used to determine the
dimensions in a list. However, you may change the position and the width
of each column in the list. Click in the header line at the right corner
of a column to change the width. One line appears, which shows the actual
width of the column. Now you may drag the line using the mouse. The place
where you drop the line (that means you release the mouse button), will
be new right border of the column. Columns, which are overlapped by the
column, will be shifted to the right.

The position of a column may be changed, too. Click over the middle
of the column header; you now may drag the column in the list. The column
will be inserted as near as possible to the place where you drop it.

You may hide columns entirely with the menuitem
List/Hide column
. The

columns may be revealed by using
List/Show column
.

List/Recalc list
calculates the positions and dimensions of all

columns again. You can compare it with Clean up of the Workbench.
Columns, which have been hidden, are kept hidden.

1.16 Stretching of the mask

Stretching of the mask

Normally, the Fields in a Fiasco mask are placed very close together.
This is not very nice and all other "normal" GUIs leave a few pixels
between the gadgets. It is possible to place one empty line between the
fields, but this wastes quickly a lot of place. For this reason Fiasco
makes it possible to leave a few pixels between the gadgets.

These values may be specified in the
options requester
under Stretch

X and Stretch Y.

The owl stretching (ehhhmm -- mask stretching %-) makes fields bigger
than specified in the field requesters. This is evident in the lines,
because most Fiasco fields only expand to this direction. String fields
may be bigger than the number of chars they can hold. The biggest problem
are text fields, because their width is normally the minimum required.
Stretching makes them wider and the text has to be centered.

You should specify zero as X value to avoid these problems and use
one column as a separator. In Y direction this value, 4 is the best
value.

fiasco 14 / 167

1.17 Editing Modes in Fiasco

Editing Modes in Fiasco

Fiasco divides it’s operation into modes. If you want to make changes in
the mask, you have to be in the mask mode. If you want to make changes in
the records, you have to be in the record mode.

Record Mode

Mask Mode

1.18 Record Mode

Record Mode

You may add, delete or edit records in this mode. It may be activated
with

Control/Record Mode
. When the record mode is active, the field type

cycle gadget in the service window is not selectable and the status
gadget displays normally the number of the active record and the number
of all records (for instance: 78 / 92).

1.19 Mask Mode

Mask Mode

This mode give you the ability to edit the mask, that is, you may create
new fields, delete some or change their position or attributes. Relations
may also created and changed here. This mode may be activated with

Control/Mask Mode
. When the mask mode is active, the "tape deck" gadgets

in the service window are ghosted and the status gadget displays normally
the coordinates of the cursor in the mask (for instance: X: 10, Y: 5).

1.20 Creating and working with a Database

Creating and working with a Database

And now to actual use: If you want to create a database in Fiasco you
will have to create the mask at first and then the records. Fiasco allows

fiasco 15 / 167

you in most aspects to create a database in an intuitive way.

The following sections describe the creation of a simple database.

Creating the Mask

Creating and working with Records

Converting Fields

Using marks

1.21 Creating the Mask

Creating the Mask

You have to activate the mask mode before you can create a mask (

Control/MaskMode
), whereupon a cursor will appear in the mask. You can

use the mouse or the cursor keys to choose the location of the next
operation in the mask. Before creating a new field you have to choose the
type of the new field. You can use either the Field/Type

menu
the lowest

gadget in the service window to choose the field type.

You then may use
Field/Add Field
to create a new field. At first, the

field requester
appears. The gadgets in the requester depend on the

supported attributes of the active field type. They are described in the

type documentation
for each field. It is not sufficient to click on Ok

without any other action; you must specify certain attributes, such as
the ID. Fiasco won’t close the requester, if it contains any invalid
settings. The field will appear in the mask after you close the
requester.

You may change all attributes later except the fieldtype (Fiasco
provides another function to do that). A field’s position may be changed
by dragging it with the mouse. The field requester may be opened by
double clicking on the field or by choosing

Field/Edit Field
. You should

take care if you want to change the field ID. Other Fiasco projects or
ARexx scripts which try to access this field won‘t find it after the
change. If you change the value max chars of string, extern or datatypes
fields, you will be informed, whether you could loose data.

With

fiasco 16 / 167

Field/Remove Field
you are able to delete Fields. Attention: If

Settings/Security-Requester
is not active, all Data in this Field will be

freed immediately. Any existing project data on disk will be also erased
when the project is saved.

You may specify further parameters for the current project, such as

mask stretching
, name of the author, etc. in the
options requester
.

Field/Edit Relations
works similar to

Edit Field
. With this menuitem

you are able to control
relations
of this field.

When you have completed the mask you may return to record mode. You
are now ready to create records.

1.22 Creating and working with Records

Creating and working with Records

You may create records for storing data in any mask containing fields.
The simplest wys to create a record is to select

Record/Add Record
or its

equivalent Add in the service window. This creates, as the name implies,
a record and activates it. The fields in the record will contain the
values that have been assigned in the mask mode. You may now activate a
field using the mouse and edit its contents.

Record/Duplicate Record provides another way of creating records.
This function creates a record, which is an exact clone of the record,
which was previously active. All init cont-attributes will be ignored.

If no longer need a record you may delete it using

Record/Remove Record
or Delete in the service window. If you have

selected Settings/Security-Reqs, you will be asked for confirmation
before the record is deleted.

You may use the menu, the service window, the cursor keys or a list
window to view the records you have created. I believed that the use of
GUI is intuitive, therefore, I will only explain the cursor keys. The

fiasco 17 / 167

up-key activates the previous record. The down-key activates the next
record. The order correspondents to the concept of a list window. The
cursor keys combined with the Ctrl key activate the first or the last
record respectively.

1.23 Converting Fields

Converting Fields

As your project develops you may decide that you want to change one or
more of the field types. For instance, the contents of a field may have
developed in a direction other than the one you originally intended. In
that case, the convert function will be useful. This function is also
helpful if you have imported a file. After a file is imported all fields
are string fields.

You must be in mask mode to open the convert requester. Activate the
field you want to convert and select Field/Convert Field. The convert
requester displays the ID of the field, the current field type and the
field types to which this field may be converted. If you select
Alternative format, the convert function may convert the data to an
other, often more abstract format. Not all field types support this
option. If you select the the new type and proceed with Ok, the field
will be converted. Note that Fiasco will not warn about the possible loss
of data. If the new field type requires additional attributes (e.g., the
extern fieldtype needs a program), the fieldrequester will open. Other
attributes will use default values. If you convert a field and then
convert it back to its original type it won’t retain the original
attributes.

Information about the results of a field type conversion can be found
in the

field documentation
. Text and button fields cannot be converted.

In other cases, converting from one field type to another does not make
much sense (e.g., boolean to datatypes).

1.24 Using Marks

Using Marks

Marks can be useful in advanced database use. A mark is simply a record’s
flag that may be toggled on or off, that is, a record is either marked or
unmarked. Marks could be simulated using boolean or other fields, but the
marking feature of Fiasco provides some additional advantages over that
approach. First of all, a marked record can be easily discovered in the
list because it is displayed in a highlighted state. If a marked record
is active an "M" will be displayed to the right of the service window’s
status gadget, therefore, marked records can only recognized in a mask if
the service window is open.

fiasco 18 / 167

Marks can be set using
Record/Mark Record
and cleared using

Record/Unmark Record
. Use
Record/Unmark all Records
to clear all marks in

a project. To set all marks, use
Record/Mark all Records
. Use

Record/Toggle all Marks
to unmark all marked records and to mark all

unmarked records.

Filters
are related to the marks. Thus, Fiasco provides some

additional menuitems in the Compare menu.
Compare/Mark
opens a search

requester that can be used to mark all records that match a given
pattern. To convert the marks into a filter use

Compare/Marks to filter
.

To convert a filter into marks, use
Compare/Filter to marks
. These

functions convert set marks to "unfiltered" records and "unfiltered"
records to set marks.

Marks are saved in a Fiasco project file and thus kept after
reloading of the project.

1.25 Searching in a database

Searching in a database

The GUI interface to the Fiasco search function is the
search requester
.

Use
Compare/Find
to open the search requester. The search requester

allows you to select the field to search and pattern to use in that
search. The controls for "blurred" search are also located here.

The search pattern is simply the text you are searching for and can
include pattern matching as explained below. When you search a boolean
field, TRUE correspondents to a selected field and FALSE to a unselected
field. Cycle fields take the number of the label (counting from zero) or
the real text of the label. Slider fields only allow the value. Extern
and datatypes fields can only be searched by filename. You cannot search

fiasco 19 / 167

(with the builtin function) the contents of a file.

The gadgets at the bottom of the requester start the search. The
record will be displayed if a matching entry is found. You can use the
menuitems

Compare/Find next
and

Compare/Find previous
to continue your

search.

Patterns

blurred Search

Searching with ARexx

Counting

Replacing

Filter

1.26 Patterns

Patterns

In addition to plain text you may use pattern matching. String fields
support the use of patterns similar to AmigaDOS (although not exactly
AmigaDOS patterns because "blurred Search" is not compatible with them). ?
is equal to one unknown character. ?iasco would match Aiasco, Biasco,

Ciasco, 1iasco, etc. ???? would match entries, which are 4 chars long. #?
stands for an unknown number of unknown characters. A#? would match for
example Amiga, Africa, A or ABCD. ?#? searches for all non-empty entries.
Similar to AmigaDOS, these characters may be "escaped", if you want to
search for entries, which contain these special characters. You have to
precede a pattern character with a ’ to enable search to find it.

You can use * instead of #? by activating it through the menuitem

Settings/Use * as pattern
.

Integer and slider fields support the following patterns: >, <, >=, <=
, !=. The argument has to be given after the pattern. > only search for
numbers greater than x, >= only for numbers greater or equal x, < only
for numbers less than x, <= only for numbers less or equal x. != searches
only for numbers not equal x. There is not pattern like == (equal),
because this is represented by the number itself.

The patterns supported by one fieldtype are also documented in the

fieldtypes documentation

fiasco 20 / 167

A
summary of all patterns
is also available .

1.27 Blurred Search

Blurred Search

"Blurred" search allows you to search for entries that are similar to a
pattern. This enables you to search for entries even if you don’t know
the exact spelling. The tolerance of the function may be set by "factor".
0 matches only entries that are exactly equal. 100 matches nearly all
entries.

The
count function
is very suitable for experiments with "blurred"

search.

1.28 Searching with ARexx

Searching with ARexx

You can also use ARexx to search a database. The commands
F_FindNext
,

F_FindPrev
and

F_FindFirst
can be used for this purpose. These commands

take the field and the pattern for searching as arguments.

In contrast to the GUI search function, the record won‘t be
activated. Only the number of the record will be returned in Result. This
number can be used with other ARexx commands, such as,

F_GotoRec
.

If you call F_FindFirst, F_FindNext or F_FindPrev without arguments,
these commands will use the arguments, which have been previously used in
the search requester. You may also set these values using

F_SetSearchPat
and
F_SetSearchField
.

See the documentation for
F_FindFirst
for an example on searching

fiasco 21 / 167

with ARexx.

You can use ARexx to create a search function that supports several
fields.

1.29 Count

Count

Compare/Count
opens a requester similar to the search requester. As in

the search requester you have to specify pattern, field and tolerance. If
you select Ok the matches will be counted. This way you can collect
experiences with the

blurred search
.

1.30 Replace

Replace

Compare/Replace
is the function that enables you to replace certain

values with others. Patterns are also possible here, but only one value
will be inserted. The Replacement gadget takes the value to be inserted.
If you select the Confirm gagdet you will be asked if you really want to
replace the value for each record. The record will be displayed while you
are asked.

Attention: You can quickly destroy important data with a bad pattern
(for example: #?)!!!

1.31 Filter

Filter

Fiasco’s filter allows you to display only those records that match a
pattern. With

Compare/Filter
you may open the

filter requester
which has

the same structure as the search requester. If select Ok only those
records that match with the specified patter will be displayed.

You may browse through the records with
Record/Next

fiasco 22 / 167

and

Record/Previous
. The list also displays only matching records. You may

temporarily disable the filter using
Compare/Filter On?
.

If you create new records while a filter is active the records will
be displayed whether or not they match the filter pattern. If you change
the contents of a existing record it will be also displayed. If you want
to update the filter, you have to call the filter requester and select Ok
.

1.32 Alternative Data Mechanisms

Alternative Data Mechanisms

Normally Fiasco stores field data directly in the project file. However,
storing certain kinds of data this way is a very inefficient use of disk
space.

Fiasco provides two alternative mechanisms for storing data.
Relational projects read the data from another project into their
projects. Several projects may access these data. In contrast, virtual
fields store their data nowhere! The data are calculated automatically
while loading the project.

Please note, that these mechanisms only help to save disk space. In
RAM, they require the same amount of memory as other fields do.

Relations

Virtual fields

1.33 Relations

Relations

Relations are fields that store their contents in another project file
rather than in the project file of the relations. An additional field is
required that contains a key used to identify the record from which the
data should be taken.

This mechanism prevents the situation, that in many different
projects the same data are stored; it therefore saves disk space.
Furthermore, you only have to change the contents of one field in one of
the projects -- all other corresponding fields will also recognize that
change.

fiasco 23 / 167

Fiasco currently supports 1:1 relations. Such a relation connects one
field in a project with another field in another project. Additionally,
Fiasco supports a relation type with the name Sum:N. This relation type
reads data from one project, adds them and puts the result in one field.
This is not really a relation, because the read data will not and cannot
be written back.

Creating Relations

Relation checklist

Technical notes

1.34 Creating Relations

Creating Relations

To use relations in Fiasco you have to create a project, which will be
the data source for another project. The source project hereafter will be
called "there" and the project that will read from it will be called
"here".

You have to create at least two fields in the "there" project, one
for the data and one for the key. The field for the key should be an
integer field. This is the fastest method. However, it is possible to use
any other field type as a keys.

You may use the special field attribute gimme unique key, if you want
to automatically get a key whenever you create a new record. Note that
the key is only created when you create a new record. If you activate
this attribute later the already existing entries will keep their old
value. If you change the contents of such a field the change will occur
without any checking.

It is up to you to choose the type of the second field. If you create
fields, which store strings (string, extern and datatypes), you should
remember the max chars value because you also have to use this same value
in the second project.

If you want to see any consequences of activating the relation, you
should create a few records with some content at first.

Now it is time to save the project and to create a new one.

The second project also must contain two fields that have to match in
type and max chars if you use string, extern or datatypes. The key field
should not use unique key, because you should freely decide which key you
want to use.

Before you activate the relation the project should be saved in the
directory in which the other project has been saved in order to be able

fiasco 24 / 167

to use relative rather than absolute paths.

Now you can open the
relation requester
for the field that is not

supposed to contain the key (
Field/Edit Relations
). The topmost cycle

gadget should display 1:1. For "real" relations, you should keep this
choice activated. To start, you should select the key "here" in the
listview in the upper left edge of the window. After that you should
select the other project with the file requester gadget at the bottom of
the requester. Now you can select the key and the real field "there".
Proceed with Ok. If everything works correctly the requester will be
closed and the relations will be loaded. Otherwise, a requester will
inform you of any failure.

A
relation checklist
, which contains the information in a compressed

form, is also available.

1.35 Technical notes about Relations

Technical notes about Relations

Fiasco 1.1 has increased the speed of accessing relations greatly. This
has been accomplished with certain optimizations, the basic code has not
changed. The action that consumes the most time when relations are
accessed is the search for correct keys. You have to go through the whole
"there" file and compare the keys for each key in your project. Fiasco
1.1 improves access speed by caching entries which have been read.
However, this consumes a great deal of memory. In low memory situations
Fiasco will have to throw out some cached entries to recover some memory.
As a result, Fiasco has to access the disk again to read these entries --
so you’re back to square one -- the whole process is slow. You should
ensure an adequate amount of free memory to avoid this.

The second method of improving the access speed is to remember the
keys that have no matching key in the "there" file. This is, of course,
only useful, if your project contains some "blind" keys.

The third method exists only because the first method exists. The
problem with this method is big files. It uses an unsorted list in which
the entries are stored with their record number. To get a record, Fiasco
will have to go through the whole list and compare each record number
with the one it is searching for. If this list contains a large number of
records this operation will be very slow (Imagine: If you have 1000
Records here, and 1000 Records there, you will have to examine 1000x1000
(MxN) records in the worst case). Sorting or special search and optimize
methods don’t solve this problem, these methods have a very high overhead
and slow the whole process even more. Fiasco 1.1 just remembers the
address of the record at which it previously stopped searching and
continues searching at this record next time around. This increases the

fiasco 25 / 167

speed with certain files in which the growth of the keys is roughly the
same as in the "there" files. I think (hope) that most files are
structured in this way. However, the worst case still lies at MxN plus a
small overhead required by this handling. This information should give
you a rough idea of why one file does not load it’s relations as fast as
another. Here is a short list of the factors which may slow down the
loading:

· Low memory

· No "blind" keys; All keys have a matching key in the "there" file

· Bad ordering of the records

Note: If you try to load relations from a floppy disk drive, it will
get extremely slow, because Fiasco seeks through the whole file.

1.36 Virtual Fields

Virtual Fields

The data of virtual fields are not saved on disk; their data are
calculated while loading the project. If you want to make a field virtual
you should activate the Virtual option in the field requester.

Fiasco uses the ARexx script of a field for calculating these data.
The script will be called for each virtual field in each record.

The number of commands that you can call is limited because Fiasco is
in a special state. Currently, you may only call these commands:

· F_GetFieldAttributes

· F_GetFieldCont

· F_IsMarked

· F_MarkRecord

· F_RequestChoice

· F_RequestField

· F_RequestFile

· F_RequestNumber

· F_RequestString

· F_SetFieldCont

· F_UnmarkRecord

fiasco 26 / 167

· F_VirtualMode

If you call any of these commands, which refers to a record, the
record currently in work will be the active one (which is the default if
you omit the record argument). If you want to refer to other records you
should be aware of the fact that you don‘t know which virtual fields have
already been completed. However, it is guaranteed, that all normal values
and all relations are Ok. If you use F_GetFieldCont and F_SetFieldCont
you don‘t know whether other virtual fields in the current record have
been completed.

The ARexx script of a virtual field will be also called, like all
other fields, after the contents are changed by the user. To find out,
whether you are in normal or virtual state, use

F_VirtualMode
.

1.37 Printing a Database

Printing a Database

You can create a print-out of a Fiasco database in several ways. The
internal print function is the easiest to use. To increase the quality of
the print-outs, you may combine TeX with the print function. If you want
to create a print-out that can’t be created with the print function, you
may use an ARexx script.

Internal Print Function

Printing with TeX

Printing with ARexx

1.38 Internal Print Function

Internal Print Function

The menuitem Project/Print opens the print window of Fiasco. This window
is similar to a Fiasco project window in mask mode. It contains elements
which can be arranged with the mouse. In the final print-out all records
will be laid out that way.

When you open the print window Fiasco tries to open a file containing
the standard print mask for the project. The file name for such files is
Project Name.fpr. Project Name is the file name of the project without
.fdb. If the file is not found, Fiasco lays-out the print mask according
to the real mask.

To print the database as a list, you should select the menuitem
Project/Get from list. This will layout the print mask according to the

fiasco 27 / 167

real list. You may use Project/Get from mask to get the mask layout.

You simply have to select Project/Print to print the project with
this layout.

The Print Mask

Print Mask files

1.39 The Print Mask

The Print Mask

The print mask has three parts: The head, the body and the foot. The head
will be printed before any other data. The body will be printed for each
record. It may contain references to project fields. These references
will be substituted by the field contents of the records while printing.
The foot will be printed last.

The print window displays only one of these parts at a time. To
change the displayed part, use the Control menu.

The print window can be handled much like the project window in mask
mode. To create an element (comparable to fields in the project mask),
select a type with Element/Type and select Element/Add or press Return.
Depending on the type, a requester will appear which gives you some
options for the fields. Fiasco supports three element types:

· Field

· Text

· Formfeed

Field elements are usable only in the print body. They can be used
to display the field contents in the print-out. The requester for field
elements contains gadgets to select the field, to set the width, to set
print styles like bold, italic or underlined and to activate clipping.
Clipping can be used to control whether or not an entry may get wider
than the specified width. If clipping is active, every entry which is
longer than the width will be clipped to fit in that width. If clipping
is not active, the following entries will be shifted.

Text elements are similar to text fields in the mask. They serve to
put static text in the print mask. They support print styles like bold,
italic and underlined. Text elements are the most important elements in
the head and foot parts.

Formfeed elements terminate the page. That means that the data after
a formfeed will be printed on a new page. Formfeed elements have no
editable options and thus no requester opens after adding such a element.
Edit element also is not usable for these elements. Because of the
special meaning, the width of formfeed elements is "infinite". Formfeed

fiasco 28 / 167

elements appear as a horizontal line in the mask.

1.40 Print Mask Files

Print Mask Files

Project/Save and Project/Save as in the print window create files which
contain the print mask structure. These files can be reopened to restore
a particular structure. If you have deleted a field in the database or if
you have changed its ID, the print mask file may contain references to
"nothing". When you open it Fiasco will try to get these references back.
Fiasco uses a requester for that purpose which shows the field ID that
was not found and a list of all fields in the current project. If you
select one and click on Ok the reference will be changed to the selected
field. If you Cancel the requester the element will be deleted.

You can easily adopt print masks to other projects this way. Simply
load the database, open the print window and load the print mask. Now you
can change all elements to the matching fields in the new database.

Besides the layout print mask, files contain the settings made in the

print options requester
.

1.41 Printing with TeX

Printing with TeX

You can use TeX to create high-quality print-outs of Fiasco projects. TeX
is a kind of programming language, originally developed by Donald E.
Knuth, which can be used to create printed documents. PasTeX is a freely
distributable TeX implementation for the Amiga that can be found on many
PD sites.

The print function of Fiasco supports TeX using
ARexx
.

If you select Print with ARexx in the
print options requester
, the

function of the Print menuitem of the print window is changed: After
creating the print-out, the ARexx script ARexx/ARexxPrint.rexx is called
with the name of the created file as its argument. This script should
call TeX to compile and print the file. Because of that you must not
write the file to PRT:. You should set Print to in the print options
requester to a temporary file, for example T:FiascoPrintOut.tex. The
script should look like this:

/* ARexxPrint.rexx

* For use with PasTeX

fiasco 29 / 167

*/

/* Parse arguments

*/
Parse Arg File

Address Command

File = strip(File,,’"’)

/* Call virtex

*/
’virtex’ ’"’ || File || ’"’

/* Create name of dvi file

*/
dotpos = lastpos(".", File)

if dotpos ~= 0 then
DVIFile = substr(File, 1, dotpos-1) || ".dvi"

else
DVIFile = File || ".dvi"

/* Call dviprint

*/
’dviprint’ ’"’ || DVIFile || ’"’

/* Delete temporary files

*/
call delete(file)
call delete(dvifile)

If you want to print with TeX you have to create the print mask in a TeX
compatible manner. For instance, you have to include a text element with
the text \documentstyle{article} or something similar in the header if
you work with LaTeX. Furthermore, the file must not contain any control
charaters. Thus, Style attributes and formfeed elements cannot be used.
The Fiasco distribution contains several examples for this.

1.42 Printing with ARexx

Printing with ARexx

"Printing with ARexx" is a very comprehensive topic. This section should
give you a rough idea of what can be done and how.

One way of printing with
ARexx
has already been explained in the

section Printing with TeX. You may "misuse" ARexxPrint.rexx for purposes
other than calling TeX. For example, you may use a script which parses
the data for your own purposes or loads it into your word processing
program.

fiasco 30 / 167

If you want to create more complex print-outs, which cannot be
created with Fiasco’s internal print function, you have to create the
print-out with ARexx alone. Such an ARexx script has to go through the
whole database and get the data it needs with

F_GetFieldCont
. After that

it may do with the data what it wants.

The Fiasco distribution contains a complex example for such a script.
The script GraphPrint.rexx is located in the ARexx directory and can be
used with the GraphDemo project. However, it can be used with any other
project that contains the required data. The script reads data from the
project and creates an x/y diagram of the data. It automatically adapts
to different value ranges. The script uses LaTeX and the eepic extension
for the print-out. That means that you have to run a special host program
in the background while printing. Because the script performs many
mathematical operations it uses the rexxmathlib.library, which is not
included in the distribution.

To start GraphPrint.rexx, click on the Graphic button in the
GraphDemo/Fragments project. To use the script with another project,
simply activate the project in Fiasco and start the script from the
Workbench or Shell. Several requesters will appear. You have to specify
what fields you want to use. You may select whether you want to view or
print the TeX file directly or to write it to a specified location. After
that the advanced options menu appears. To modify nothing, simply click
on Continue. Edit Scale Base allows you to specify a value which will be
used by the script as a base value for the scale of one of the axises.
For example, if you use 5 (which is the default) you will get a scale of
5, 10, 15, etc. If you use 2 you will get 2, 4, 6, etc. Edit Origin
allows you to choose whether the diagram will begin at point (0;0) or at
a point which is the best for the project.

1.43 Import and Export

Import and Export

The Import and Export functions of Fiasco provide the ability to load
data from other database programs into Fiasco and to write data with
Fiasco that may be read by other programs.

Such Import/Export-files contain ASCII data. The fields or records
are marked with special characters that may be freely defined in the
Import/Export function of Fiasco.

Beginners, please note: Some basic knowledge is required to be able
to effectively use Fiasco’s Import/Export function. If you are familiar
with databases you can skip the following information. The section

Special characters
describes the special escape sequences used by Fiasco.

Although other databases may use a similar scheme you should
read this section carefully. The whole Import/Export function of Fiasco
relies on these escape sequences.

fiasco 31 / 167

Structure of Import/Export files

How to specify special characters

Importing of Data

Exporting of Data

1.44 Structure of Import/Export files

Structure of Import/Export files

The names used here refer to the gadget labels in the Import/Export
requesters. Note that some marking characters may be empty. To use the
file with Fiasco you have to define, at minimum, either Field Start/Field
End or Field Separator and either Record Start/Record End or Record
Separator. However, the import functions of other programs may get
upset, although this structure is correct.

Record Start
Field Start
Field Data Contents of the field in ASCII format.
Field End
Field Separator Separates two fields, not used after the last field of a
record.
...
Field Start
Field Data
Field End
Record End
Record Separator Separates two records, notused after the last record
of a file.
...
Record Start
... (see above)
Record End
End of File
If you activate First Record contains IDs, the field IDs will be stored
in the first record as if they were fields.

An Example of an Import/Export file
Record start and record end are empty. Record separator is a newline
character. Field start and field end are double quotes. Field separator
is a comma. The first record contains the IDs of the fields. Note the
empty field in the last record.
"Name","FirstName","Rank","Current"
"Picard","Jean-Luc","Captain","U.S.S. Enterprise"
"Riker","William Thomas","Commander","U.S.S. Enterprise"
"Data","","Lieutenant Cmdr.","U.S.S. Enterprise"

fiasco 32 / 167

1.45 How to Specify Special Characters

How to Specify Special Characters

You often cannot simply type the characters for marking fields and
records as plain text. For example, if you want to use the newline
character as a record separator, you cannot simply hit the Return key.
Instead, you have to type it in as an escape sequence. Fiasco supports
escape sequences similar to the escape sequences of the "C" programming
language. The escape sequences are introduced by a \. These are
supported:

\n Newline-character, ASCII 10
\f Formfeed-character, ASCII 12
\r Return-character, ASCII 13
\t Horizontal tabulator, ASCII 9
\v Vertical tabulator, ASCII 11
\Number Character with specified ASCII code
\Char Character directly copied
The last option (\ + Character) makes it possible to use a character,
which is reserved for escape-sequences.

In Import, you may also specify character-classes. Character-classes
are introduced in Fiasco with an #. These are supported:

#p Printable character.
#a Printable ASCII-character. Without international chars
#c Control-character. Not printable
Export supports to insert some additional information in the export-file.
These commands are introduced with an %. These are supported:

%f ID of field
%r Number of record

1.46 Importing of Data

Importing of Data

The import requester is the GUI interface for Fiasco’s import function.
You can open it using Project/Import. The file you want to import must be
specified in File. After having done this you have to specify the
structure of the file in the requester.If you are importing a file into
Fiasco immediately after export it from another database and still know
the structure parameters you can simply copy them into Fiasco’s import
requester. Otherwise you can display the contents of the file using the
View button at the right side of the filename. Fiasco will start either
"More" or "MultiView" to display the file. If the file has a standard
structure it should not be too difficult to recognize the parameters.

Usually, Record Start and Record End are empty and Record Separator

fiasco 33 / 167

is \n. Field Start and Field End are often empty or double quotes (").
Usual values for Field Separator are a comma (,) or a tabulator (\t).

Skip Lines defines the characters that introduce a comment at the
beginning of a line. If present, specify the comment introducer here.
This may also be used to skip any formatting information present in the
file. Fiasco’s import function does not use such information. You can use
Start Skip to skip any initial comment or similar items in the file. Max.
Fields can be used to specify a record end mark if neither Record
Separator nor Record End can be used.

Activate First Record contains IDs if the first record of the input
file consists of Field IDs rather than real data. If you activate this
the IDs will be used by Fiasco either to create fields with these IDs or
to use already existent fields.

The options Append new fields and Overwrite old project control,
whether you want to update a project or you want to create a new one. If
you want to create a new project, you should activate both options.
Updating projects using Import

If you want to continue using your current settings you may save them
with the Save button. Settings may be reloaded with Load. Fiasco already
comes with several settings to import data from various sources.

To start the import process, you just have to click on Ok.
Attention: If the input file is too big, or even if the structure
parameters are defective, the system may run out of memory! Fiasco has no
big problems, if it runs out of memory, but other programs may have
problems. For this reason, you should be careful with unsaved data!

If everything went well, the import requester will close and the new
project will be activated. You will first want to improve the formatting
of the project using the mask mode. If you did not activate First Record
contains IDs, you should change the field IDs according to the contents
of the fields. In addition, you should create text fields to labek the
existing fields. At this point you have a nicely formatted project.
However, all fields are string fields. You should determine whether some
fields may be integer, cycle or other field types. You may change the
type of these fields with the Fiasco’s

convert
function. In the example

used in
Structure of Import/Export files
, the rank field may be

converted to a cycle field.

If you have followed these steps the project should be saved under a
appropriate name.

1.47 Exporting of Data

Exporting of Data

fiasco 34 / 167

From Fiasco’s viewpoint, exporting data is much less complicated than
importing. Normally, you can use Fiasco’s default parameters (No Record
Start and Record End, a newline character for Record Separator, double
quotes for Field Start and Field End and a comma for Field Separator).
If you use these parameters, you must take care, that you data do not
contain any double quotation marks. In addition, you have to be certain
that the program you want to import the data supports these parameters.

If you select First Record contains IDs, Fiasco will create an
additional record at the top of the file which contains the field IDs.
The file will contain no other formatting information.

If you select Marked Records only, only the marked records will be
written.

Click on Ok to start exporting.

1.48 Fieldtypes

Fieldtypes

Data are stored in fields. There are only two basic types: "string" and
"number". All other types are modifications, more or less, of these types
which make the work with the database easier.

Fiasco supports the following types:

String

Integer

Float

Boolean

Cycle

Slider

Date

Time

Extern

Datatypes

Text

Button

Bar

fiasco 35 / 167

1.49 Standard Attributes

Standard Attributes

These attributes are normally supported by a field type:

ID: This string serves for identification of a field. It is
displayed in mask mode in the fields, in the list header, in the
search and related requesters and in the relation requester. You also
have to use it in ARexx scripts, if you want to access a field from
there. This string must be unique in the current project.

Width: defines the width of the field in the mask in characters. This
value is also used as a default value for the width of a list column.
However, this can be changed separately.

Init Cont/Use own value: you may specify a value here which will be
used while creating a new record.

Init Cont/Use old value: If you create a new record the value which has
been used in the old record will be used in the new record.

Script: You may specify a ARexx script here which will be called, when
a new record is created, or the content of a field is changed. It is
possible that init cont will not have the effect specified in the
requester, if the script changes the contents of the field.

Read Only: The field content will be displayed in a recessed box which
cannot be activated or edited.

Virtual: The value of the field is not saved on disk, but is
recalculated every time the project is loaded. This is done using the
init cont attributes and the ARexx script attribute. Please note that
these fields occupy the same amount of RAM as other fields.

By using
mask stretching
it is possible that the attributes, which

specify the dimensions of the field, will be slightly influenced.

1.50 String Fieldtype

String Fieldtype

A string field takes strings with a designated length.

fiasco 36 / 167

New Attributes:

Max Chars: determines, how many chars may be typed in this field. This
attribute has direct effect on the size of the project file.

Search equivalent:
correspondents to the content.

Supported search patterns:
? = One unknown character.
#? = No or more unknown characters.

Conversion into a string field:
Any field can be converted without loss of data into a string field.
Alternative formats, if supported are specified in parentheses.
Additional notes:

Boolean - "Checked" is TRUE(1), otherwise FALSE(0)
Cycle - Label (label number) converted
Slider - Level converted
Date - Date in format "DD.MM.[YY]YY" converted
Time - Time in format "HH:MM[:SS]" converted

1.51 Integer Fieldtype

Integer Fieldtype

You may enter integer numbers in the range from -2,147,483,348 to
2,147,483,347 in an integer field.

New Attributes:

Max Chars: determines the maximum length of a number in chars.

Init Cont/Gimme unique Key: puts a number unique to this database in
this field whenever a new record is created. This Attribute is
mutually exclusive to use own value and use old value.

Search equivalent:
is equal with the field content.

Supported search patterns:
>- greater than
<- less than
>=- greater or equal
<=- less or equal
!=- not equal

Conversion into an integer field:

fiasco 37 / 167

Integer fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character the field will contain 0.
Additional notes:

Float - Integer part converted
Boolean - "Checked" gets 1, "Unchecked" gets 0
Cycle - Label number converted
Slider - Level converted
Date - First date element (Day) converted
Time - First time element (Hour) converted

1.52 Float Fieldtype

Float Fieldtype

You may enter a real number in a float field.

New Attributes:

Precision: Number of digits after the decimal point.

Search equivalent:
is equal to the field content

Conversion into a float field:
Float fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character, the field will contain 0.
Additional notes:

Boolean - "Checked" gets 1.0, "Unchecked" gets 0.0
Cycle - Label number converted

Note: The precision of the float field type is not very high. It is
recommended to use

string
fields instead. ARexx is also able to execute

mathematical operations with string fields if they contain only numerical
characters.

1.53 Boolean Fieldtype

Boolean Fieldtype

A Boolean field can contain only one of two values: "True" or "False". It
appears in the mask as a "checkbox gadget".

Changed Attributes:

Width: always 3

fiasco 38 / 167

Search equivalent:
TRUE or 1 - checked field
FALSE or 0 - unchecked field

Conversion into a boolean field:
Boolean fields convert all non-0 numbers and TRUE into the checked state.
All other values will be converted to the unchecked state.

Under Amiga OS 2.x this field can look a bit strange because the
images are not scalable. Starting with OS 3.0, the size of the field is
adjusted to the font size.

1.54 Cycle fieldtype

Cycle fieldtype

Cycle fields have several choices from a freely definable list, this
helps to save memory. There is a maximum of 65536 choices. (I hope that’s
enough ;-) A cycle field appears in the mask as a "Cycle gadget" (as the
name implies).

New Attributes:

Labels: A list of all choices. There must be at least one entry, two
entries make it a cycle field.

Search equivalent:
the number of the label, counting from zero or the entry itself (enter
correctly!)

Conversion into a cycle field:
The values will be converted into labels. If there are equal values they
will get the same label. Data are not lost.
Additional notes:

Boolean - "Checked" becomes TRUE(1), otherwise FALSE(0)

1.55 Slider fieldtype

Slider fieldtype

A slider is related to a integer field. It can be used to display integer
numbers graphically. The numbers may range from -32,768 to 32,767 and may
be influenced by several attributes.

New Attributes:

fiasco 39 / 167

Min. Value: defines the smallest value. It corresponds to the position
of the "knob" at the left or at the upper end of the field.

Max. Value: defines the highest value. It corresponds to the position
of the "knob" at the right or at the lower end of the field.

Format: is a format string in style of the "C" programming language.
The syntax: %[-][0][Field][.Maximum][l]Format

· -: The number is left aligned, the default is right aligned

· 0: The field is padded with zeroes. e.g.: 1 -> 001

· Field: The minimal field width

· Maximum: only for strings, no meaning here.

· l: Says that the number is 32 bit wide. This is here always the case.

· Format:
c - Char, the ASCII character for the number is displayed.
d - The number is displayed.
u - The unsigned number is displayed.
x - The number is displayed in hexadecimal format.
There are also the b and s control characters. These take addresses as
arguments and produce only garbage in this case.

The formatting is done with the exec-function RawDoFmt().

MaxFormatLen the maximum length of the format. This region is in
the width region. That means that a higher MaxFormatLen makes the field
itself smaller.

Search equivalent:
The number itself.

Supported search patterns:
> - greater than
< - less than
>= - greater or equal
<= - less or equal
!= - not equal

Conversion into a slider field:
Slider fields only accept the numeric part of the source data. If the
source data begin with a non-numeric character the field will contain 0.
You should check the range attributes after converting -- they could
influence the data.

fiasco 40 / 167

1.56 Date fieldtype

Date fieldtype

You may enter a date in a date field.

New Attributes:

Init Cont/use current Date: When a new record is created the current
date is copied in this field.

Search equivalent:
is equal to the contents

Conversion into a date field:
Date fields require the data in the format DD.MM.[YYYY]. The single parts
must be numbers. If values are non numeric, the part will get "??".
Additional notes:

Integer - converted to first element (Day)
Float - integer part becomes day, fractional part Month.
Time - Hour becomes Day

Currently, Fiasco only displays and reads the date in German format
(DD.MM.[YY]YY). No verification of the values is made, this makes values
like 65.20.3687 possible.

1.57 Time fieldtype

Time fieldtype

You may enter a time in a time field.

New Attributes:

Init Cont/use current Time: the current time will be copied in this
field when you create a new record.

Search equivalent:
is equal to the content.

Conversion into a time field:
Time fields require the data in the format HH:MM:SS. Every element must
be a number. If an element is non numeric, it will be 0.
Additional notes:

fiasco 41 / 167

Integer - Converted to hour
Float - Integer part converted to hour
Date - Day becomes hour

Currently, the time is only displayed with seconds (HH:MM:SS). AM and
PM are not supported. No verification of the values is done, that means
that values like 55:66:99 are possible.

1.58 Extern fieldtype

Extern fieldtype

A extern field takes a string (most often a filename) that will be used
on request as argument for a user defined program. This makes it possible
to define additional data for a record.

New Attributes:

Command: is the name of a program, which is capable of using these
data. The characters %s are replaced with the content of the field. If
you don‘t use %s, no arguments will be submitted. (For example type:
C:ED %s)

Stack: defines the stack size for a command.

Max Chars: defines the maximum length of a filename in chars. This
attribute has direct effect on the size of the project file.

FileReq Gadget: select this attribute to have an gadget at the left
side of the field that opens a file requester to edit the content. Of
course, this only makes sense if the contents are filenames.

Search equivalent:
is equal to the content.

Conversion into a extern field:
All fields can be converted without loss of data into an extern field.
However, you have to specify a program that can use these data.
Additional notes:

Boolean - "Checked" becomesTRUE(1), otherwise FALSE(0)
Cycle - Label (Label number) converted

The programs will be called using the AmigaDOS function System(). A
console window will be opened for I/O operations.

1.59 Datatypes fieldtype

fiasco 42 / 167

Datatypes fieldtype

A datatypes field is similar to an extern field. The difference is the
use of the datatypes.library. This is the reason, why you can use these
fields only with Amiga OS 3.0 or greater. The major advantage is that the
data will be displayed directly in the mask. A datatypes field is
universal usable and freely extensible. A "popup"-gadget at the lower
left side of the field makes it possible to edit the contents using an
file requester. If something goes wrong, the error will be displayed in
the field.

New Attributes:

Max Chars: defines the maximal length of the filename. This attribute
has direct effect on the size of the project file.

Scrollbars: Determines if scrollbars will be created at the bottom and
at the right border of the field. Without a scrollbar you can only
view the upper left of a file. (That is not completely true. Some
datatypes scroll their display if you click in their area and drag the
mouse in the direction of the hidden part. The picture datatype is one
example.)

Save gadget: If you activate this option you will get a second button
under the datatypes field. The button will be marked with an S. If you
select the button a file requester will appear which lets you choose a
file to which the data, which are currently displayed in the field,
will be saved. The data will be written in IFF format.

Display filename: When this option is active the filename is displayed
at the bottom of the field in a string gadget. If you deactivate this
option you cannot edit the value of the field.

Border: If this option is active Fiasco will render a border around the
field. Do not deactivate this option too often because there are no
visual elements which mark the beginning and the end of the field.

Defer loading: If you activate this option, the file of the field will
not be immediately loaded when the record is activated. Instead, the
message "Deferred" will be displayed in the field. Only if you
activate the string gadget and hit return the data will be loaded and
displayed.

Immediate play: Select this option to start playing of the data
immediately after activating the record. If you activate this option,
Defer loading must not be active. Of course, this option is only
effective, if the datatype supports playing. The animation and the
sound datatypes are such datatypes.

Searchequivalent:
Is equal to the filename; You cannot search the content.

Conversion into a datatypes field:
All fields can be converted without loss of data into a datatypes field.

fiasco 43 / 167

However, the datatypes system requires valid filenames.
Additional notes:

Boolean - "Checked" becomesTRUE(1), otherwise FALSE(0)
Cycle - Label (Label number) converted

The AmigaGuide and the animation datatype seem to have some problems
with relatively small fields.

AmigaGuide datatype leaves sometimes graphical trash after scrolling
the contents.

The changing of records gets slower, because the data have to be
loaded each time. To avoid that use Defer loading.

1.60 Text fieldtype

Text fieldtype

Text fields are not real fields; these fields only serve to put text in
the mask.

Supported Attributes:

Text: Will be written in the mask.

Pen: The color used to write the text. The Normal default is black and
the Highlight default is white. The colors can be manipulated with the
palette prefs editor.

Bold: Makes the text bold.

Italics: Makes the text italic.

Underlined: Underlines the text.

No
standard attributes
are supported!

search equivalent:
You cannot search for a text field

Conversion into a text field:
You cannot convert any other fieldtype into a text field.

1.61 Button fieldtype

Button fieldtype

fiasco 44 / 167

Button fields only serve to put a button in the mask for a user-definable
action and are not real fields.

Supported Attributes:

Text: will be displayed in the button.

Type: Use Type to choose whether the button will execute a CLI or an
ARexx program. CLI programs may be normal programs, commands or
scripts (with the "s" attribute). ARexx programs must be ARexx
scripts.

Command: Use Command to select the program that will be executed when
the button is activated.

Stack: You may specify the stack size for the program here. The default
is 4096. The program to be activated will crash if the stack size you
specify is too small.

Console Window: lets you specify the I/O stream for the program. It may
be a console-window (CON:), the printer (PRT:), a simple file, or, if
you don‘t want any output NIL:.

The button fieldtype only supports the width-
standard attribute
.

search equivalent:
You cannot search for a button field

Conversion into a button field:
You cannot convert another fieldtype into a button field.

1.62 Bar fieldtype

Bar fieldtype

Bar fields only serve to put a visible separation in the mask and are not
real fields.

Supported Attributes:

Width/Height: The width or the height of the bar, depending on Freedom.

Freedom: determines whether the bar is drawn in the mask horizontally or
vertically.

The button fieldtype supports no standard attributes.

search equivalent:

fiasco 45 / 167

You cannot search for a bar field

Conversion into a bar field:
You cannot convert another fieldtype into a bar field.

1.63 Fiasco’s Graphic User Interface

Fiasco’s Graphic User Interface

Fiasco initially opens with an empty window. You can use the pull down
menus to work in it. The people who don’t like pull down menus may open
an additional window using

Control/ServiceWindow
. This window makes the

most important operations accessible via a mouse click. Keyboard
shortcuts are the third way to execute operations.

Menus and shortcuts

Service window

Requester
The mouse can be used in the mask mode to move the cursor and ←↩

to drag
fields. After a double click on a field, its

field requester
will be

opened (like
Field/Edit field
).

Fiasco supports Menu help. If you press the help key while you browse
through the menus, a short description will be displayed in an AmigaGuide
window (This feature requires amigaguide.library, which is part of the OS
since release 3.0. If you use 2.0 or 2.1, you may get it from the PD).

The requesters used by Fiasco have a standard structure. The gadgets
at the bottom are for responding. Normally, the left one is a positive
response, while the right one is negative. The close gadget of the window
is equivalent to a negative response. Nearly all gadgets in the
requesters may be accessed using the keyboard. Use the Return key for a
positive response and the Esc key for a negative response.

1.64 The Service Window

The Service Window

The service window may be opened or closed with
Control/ServiceWindow
. If

fiasco 46 / 167

you want Fiasco to open the service window on every program startup,
select the menuitem

Settings/Auto-Open ServiceWin
. Select

Settings/Dynamic ServiceWin
if you want Fiasco to search for a free place

on the screen when Fiasco opens the window. Otherwise, the position of
the service window at the time of saving the settings is used.

The service window contains these gadgets:

Add

Del

|<

<

>

>|

<Filename>

<Status>

<Fieldtype>

1.65 Add

Add

If the current project is in record mode a new record will be created. If
mask mode is active a new field will be created.

Equivalent to:

Record/Add
in record mode

resp.

Field/Add field
in mask mode.

1.66 Delete

Delete

fiasco 47 / 167

If the current project is in record mode, the current record will be
removed. If mask mode is active, the current field will be removed.
Attention: This will normally happen without any security request!

Equivalent to:

Record/Remove
in record move

resp.

Fields/Remove Field
in mask mode.

1.67 First

First

If the current project is in record mode, the first record will be
activated.

Equivalent to:

Record/First

1.68 Previous

Previous

If the current project is in record mode the previous record will be
activated.

Equivalent to:

Records/Previous

1.69 Next

Next

If the current project is in record mode the next record will be
activated.

Equivalent to:

Records/Next

fiasco 48 / 167

1.70 Last

Last

If the current project is in record mode the last record will be
activated.

Equivalent to:

Records/Last

1.71 Active project

Active project

The name of the current project is displayed here. If two projects only
differ in the path and not in the name, the same name will be displayed.

You may activate another project by activating the window of a
project.

1.72 Status

Status

Status information is displayed here.

In the record mode:
number of active record/number of records
A

Filter
may change these numbers.

In the mask mode:
X: X position of cursor, Y: Y position of cursor

1.73 Fieldtype

Fieldtype

If you are in record mode you can select the fieldtype which will be used
for subsequent calls of Add Field. Equivalent to:
Fields/Field Type.

fiasco 49 / 167

1.74 Menus

Menus

Fiasco has these pull down menus:
(from left to the right; menus, which are marked with a ’/’, may be
activated or deactivated)

Name Keyboardshortcut
Project

New
A N

Erase
A Z

Open...
A O

Options...
A $

Statistic...

Reload Relations
A !

Save
A S

Save as...
A A

Import... A I

Export...
A E

Print...
A P

About...
A ?

Quit
A Q

Record

Add Record
A +

Duplicate Record
A 2

Delete Record

fiasco 50 / 167

A -

Delete all Records
A @

Cut Record
A X

Copy Record
A C

Paste Record
A V

Previous
Cursor Up

Next
Cursor Down

First Record
Ctrl Cursor Up

Last Record
Ctrl Cursort Down

Goto...
A G

Mark Record
A .

Unmark Record
A :

Mark all Records
A ,

Unmark all Records
A ;

Toggle all Marks
Field

Field Type »
String Ctrl S

Integer Ctrl I
Float Ctrl F
Boolean Ctrl B
Cycle Ctrl C
Slider Ctrl S
Date Ctrl A
Time Ctrl M
Extern Ctrl E
Datatypes Ctrl D
Text Ctrl T
Button Ctrl U

fiasco 51 / 167

Add Field...
Enter

Edit Field...
Enter

Duplicate Field

Remove Field
Del

Edit Relation...
A &

Remove Relation
A 0

Convert Field...
A "

List

Hide column
A [

Show column...
A]

Show all colums

Recalc List
A %

Compare

Find...
A F

Find next
A >

Find previous
A <

Replace...
A R

Count...
A #

Sort...
A =

Edit Filter...
A ~

fiasco 52 / 167

/ Use Filter?
A ‘

Mark...
A K

Filter to Marks

Marks to Filter
Control

/ Record Mode
A D

/ Mask Mode
A M

/ ServiceWindow
A W

/ ListWindow
A L

/ ARexx-Debug
A B

Settings

/ Create Icons?

/ Create Backups?

/ Write Rels?

/ Update Rels?

/ Security-Reqs?

/ AutoOpen SerWin?

/ Dynamic SerWin?

Display...

Editor...

Save Settings

Save Settings as...

Load Settings...
User

Edit...
A U

fiasco 53 / 167

1.75 Project/New

Project/New

Shortcut: A N

Creates a new project with a mask window. It contains no records or
fields. You may create a new database or

Open
a saved database.

See also:
Open

1.76 Project/Erase

Project/Erase

Shortcut: A Z

Erases all data in the current project. The project will be in a status
like immediately after calling

Project/New
. If data have been changed

since last saving, you will be asked before the data is erased.

1.77 Project/Open...

Project/Open...

Shortcut: A O

Opens a file requester and loads the selected Fiasco project into the
current project window. If there are any unsaved data you will be asked
whether you want to save them first.

If Amiga OS 3.0 is available, Fiasco will increase the buffer size of
the file. This speeds up the load process considerabily.

1.78 Project/Options...

Project/Options...

Shortcut: A $

fiasco 54 / 167

This menuitem opens the
options requester
, which can be used for editing

project specific options. That are:

·
Mask stretching
· Name of author and annotations

· filename of project

· project windows

The point "filename of project" makes it possible to change to name
of the project without the need to call

Save as
.

1.79 Project/Statistic...

Project/Statistic...

no Shortcut

Shows some information for the current project. Example:
One Record requires about 100 Byte of RAM. 200 Records of this project
need about 19 KByte of RAM. There is space for about 2300 more Records.

The memory required for the project and the basic fields is not
included.

1.80 Project/Reload Rels

Project/Reload Rels

Shortcut: A !

This item reloads all relations in the current project, just as they were
loaded while opening the project. This is particularly useful if you have
deactivated

Settings/Update Relations?
, changed some keys and want to see

the result.

1.81 Project/Save

Project/Save

Shortcut: A S

fiasco 55 / 167

Save writes the data of the current project under the same name to disk.
If you want to save the project under a different name you have to use

Save as
or

Options
to change the name and then Save.

If Amiga OS 3.0 is available, Fiasco will increase the buffer-size of
the file. This speeds up the save process considerably.

1.82 Project/Save As...

Project/Save As...

Shortcut: A A

You may save the current project under a new name here. The name will be
requested using a file requester and will be kept after saving.

If Amiga OS 3.0 is available, Fiasco will increase the buffer-size of
the file. This speeds up the save process considerably.

1.83 Project/Import...

Project/Import...

Shortcut: A I

Opens the
import requester
, the GUI interface for the import function of

Fiasco. You can use import to load data from foreign databases into
Fiasco.

1.84 Project/Export...

Project/Export...

Shortcut: A E

Opens the
export requester
, the GUI interface for the export function of

Fiasco. You can use export to save data in a format which can be read by
other databases.

fiasco 56 / 167

1.85 Project/Print...

Project/Print...

Shortcut: A P

Opens the print window, the main interface to Fiasco’s
print function
.

You may create a layout for printing here and print it.

1.86 Project/About...

Project/About...

Shortcut: A ?

This item shows a small requester that displays informations about
version, copyright and some system internal data.

1.87 Project/Quit

Project/Quit

Shortcut: A Q

This item closes the current project. If it has been changed and has not
been saved yet, you will be asked if you want to do this. If this is the
last open Fiasco project, Fiasco will exit.

1.88 Record/Add Record

Record/Add Record

Shortcut: A +

Adds a new record to the record list of the current project. Each Field
contains then its init cont, which is normally nothing. If the list is
open a new line will be inserted.

If a
Filter
is active the new record automatically will be declared

valid. If you want that new records are filtered correctly you will have
to select

Compare/Edit Filter
again and simply click on Ok.

This menuitem may only be selected in

fiasco 57 / 167

record mode
.

See also:
Record/Remove Record

1.89 Record/Duplicate Record

Record/Duplicate Record

Shortcut: A 2

Creates an exact copy of the current record. All init cont attributes
will be ignored. Even a field with gimme unique Key will contain the old
value. That means that two records with the same "unique" key will exist.

1.90 Record/Delete Record

Record/Delete Record

Shortcut: A -

Removes the current record and the data in it. If there are relations
which search for a key defined in this record, they will not find
anything in the future.

This menuitem may be selected only in
record mode
. If you have

selected
Setting/Security-Requester?
, you will be queried before

proceeding.

See also:
Record/Add Record
,
Record/Delete all Records

1.91 Record/Delete all Records

Record/Delete all Records

Shortcut: A @

Removes all records in the current project. The mask will not be deleted
by this function.

Record/Delete all Records may be only called in record mode.

fiasco 58 / 167

Note: Unlike the functions Delete Record and Remove Field, this
menuitem does not put up a security requester, if Security-Requesters is
activated. However, if the project has been changed, Fiasco will put up a
standard Ok-Save-Cancel-Requester.

See also:
Record/Delete Record

1.92 Record/Cut Record

Record/Cut Record

Shortcut: A X

Copies the current record to the clipboard and removes it from the record
list of its project. After that, you may use

Record/Paste Record
to

insert it in the project, again.

This function may be called only in record mode.

See also:
Record/Copy Record
,
Record/Paste Record
, Section Clipboard

support of Fiasco

1.93 Record/Copy Record

Record/Copy Record

Shortcut: A C

Copies the current record to the clipboard. You may use

Record/Paste Record
to insert it in the project again.

This function may be called only in record mode.

See also:
Record/Cut Record
,
Record/Paste Record
, Section Clipboard

support of Fiasco

fiasco 59 / 167

1.94 Record/Paste Record

Record/Paste Record

Shortcut: A P

Creates a new record and pastes the contents of the clipboard into that
record. Normally, you should call

Record/Cut Record
or

Record/Copy Record
before calling this function.

This function may only be called in record mode.

See also:
Record/Cut Record
,
Record/Copy Record
, Section Clipboard

support of Fiasco

1.95 Record/Previous

Record/Previous

Shortcut: Cursor up

Activates the record predecedin the current record. If the current record
is the first one, the display will be "beeped". Please note, that

filters
change the behavior of this item. In this case the previous ←↩

matching
record will be activated.

The keyboard shortcut correspondents to the structure of the list
which displays the previous record over the current record.

This menuitem may be only selected if
record mode
is active.

See also:
Next
,
First
,
Last
,
Goto
,
Find previous

fiasco 60 / 167

1.96 Record/Next

Record/Next

Shortcut: Cursor down

Activates the record after the current record. If the current record is
the last in the list, the display will be "beeped". Please note, that

filters
change the behavior of this item. In the case of an active

filter, the next matching record will be searched.

The keyboard shortcut correspondents to the structure of the list,
which displays the next record under the current record.

This menuitem may be only selected if
record mode
is active.

See also:
Previous
,
First
,
Last
,
Goto
,
Find next

1.97 Record/First Record

Record/First Record

Shortcut: Ctrl Cursor up

Activates the first record of the current project. In the case of an
active

filter
, for the first matching record will be searched.

This item may be only selected in
record mode
.

See also:
Next
,
Previous
,
Last
,

fiasco 61 / 167

Goto

1.98 Record/Last Record

Record/Last Record

Shortcut: Ctrl Cursor down

Activates the last record of the current project. In the case of an
active

filter
, for the last matching record will be searched.

This item may be only selected in
record mode
.

See also:
Next
,
Previous
,
First
,
Goto

1.99 Record/Goto...

Record/Goto...

Shortcut: A G

Opens the
goto requester
which can be used to activate a record using its

number. Please note that the record number may be changed by adding or
deleting records or by using

filters
.

This item can only be selected in
record mode
.

See also:
Next
,
Previous
,
First
,
Last

fiasco 62 / 167

1.100 Record/Mark Record

Record/Mark Record

Shortcut: A .

Marks the current record. If a record is marked, it will displayed
highlighted in the list and the character "M" will be displayed in the
service window.

This item can only be selected in
record mode
.

See also:
Unmark Record
,
Mark all Records
,
Unmark all Records

1.101 Record/Unmark Record

Record/Unmark Record

Shortcut: A :

Deletes the mark of the current record. It won‘t be displayed highlighted
anymore.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Mark all Records
,
Unmark all Records

1.102 Record/Mark all Records

Record/Mark all Records

Shortcut: A ,

Marks all records in the current project. Note that the previous marking

fiasco 63 / 167

of all records will be overwritten.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Unmark Record
,
Unmark all Records
,
Toggle all Marks

1.103 Record/Unmark all Records

Record/Unmark all Records

Shortcut: A ;

Clears the marks of all records in the current project. Note that the
previous marking of all records will be overwritten.

This item can only be selected in
record mode
.

See also:
Mark Record
,
Unmark Record
,
Mark all Records
,
Toggle all Marks

1.104 Record/Toggle all Marks

Record/Toggle all Marks

No Shortcut

Toggles the marks of all records in the current project. A marked record
will be unmarked and an unmarked will be marked. You can restore the
previous marking of the records by calling this menuitem once again.

This item can only be selected in
record mode
.

fiasco 64 / 167

See also:
Mark Record
,
Unmark Record
,
Mark all Records
,
Unmark all Records

1.105 Field/Fieldtype

Field/Fieldtype

Select the current fieldtype in this submenu. It will be used if you
create fields. The cycle gadget in the

service window
has the same

function. These fieldtypes are available:

String
Ctrl S

Integer
Ctrl I

Float
Ctrl F

Boolean
Ctrl B

Cycle
Ctrl C

Slider
Ctrl S

Date
Ctrl A

Time
Ctrl M

Extern
Ctrl E

Datatypes
Ctrl D

Text
Ctrl T

fiasco 65 / 167

Button Ctrl U

1.106 Field/Add Field...

Field/Add Field...

Shortcut: Return

Opens the
field requester
for the current field type and inserts the

created field at the current cursor position.

This item can only be selected in
mask mode
.

If there is already a field at the current cursor position nothing
will be done.

Please note that Return is also shortcut for
Edit Field
. Return

creates a new field, if no field is currently active, otherwise, it opens
the requester for editing the active field.

See also:
Edit Field
,
Edit Relations
,
Remove Field

1.107 Field/Edit Field...

Field/Edit Field...

Shortcut: Return

Opens the
field requester
for the selected field. The field requester can

be used to change several attributes of the field. If certain changes
would cause the lose of data (e.g. changing max chars of a string field
to a lower number), you will be informed about the problem and given the
opportunity to cancel the change. Field types may not be changed this
way. You have to use

Convert Field
.

Please note that Return is also a shortcut for
Add Field

fiasco 66 / 167

. Return
calls Add Field if no field is active and otherwise calls Edit Field.

This item can only be selected in
mask mode
.

See also:
Add Field
,
Edit Relation

1.108 Field/Duplicate Field

Field/Duplicate Field

No shortcut
Makes an exact copy of the active field. It will be placed as near as
possible to the original field. The ID will be copy_of_FieldID.

1.109 Field/Remove Field

Field/Remove Field

Shortcut: Del

Removes the selected field. All data in this field will be lost.
Relations or ARexx scripts which refer to this field will be not
functional. Attention: The relations or ARexx scripts will not complain
immediately after removing the field, but at the first activation.

This item can only be selected in the
mask mode
.

See also:
Edit Field
,
Edit Relations
,
Add Field

1.110 Field/Edit Relation...

Field/Edit Relation...

Shortcut: A &

This item opens the
relation requester

fiasco 67 / 167

, which adds a
relation
to the

current field.

This item can only be selected in
mask mode
.

See also:
Field/Remove Relation

1.111 Field/Remove Relation

Field/Remove Relation

Shortcut: A 0

This item deletes all relation information for the active field. The data
in this field will be written into the normal file.

This item can only be selected in
mask mode
.

1.112 Field/Convert Field...

Field/Convert Field...

Shortcut: A "

Opens the
convert requester
for the selected field. Using convert you may

change the type of a field.

This item can only be selected in
mask mode
.

See also:
Add Field
,
Edit Field

1.113 List/Hide column

fiasco 68 / 167

List/Hide column

Shortcut: A [

Hides an activated column of the
list
. You activate a column by clicking

in the topmost line of the list which contains the field IDs. After
hiding a column, the columns at the right side of it will be shifted to
the left. The column may be made visible again by using

Show column
.

This item may only be selected if the list window is open.

1.114 List/Show column...

List/Show column...

Shortcut: A]

This item opens a requester which may be used to reveal the columns
hidden with

Hide column
. Fiasco tries to place the columns as near as

possible at their old positions.

This item may only be selected if the list window is open.

1.115 List/Show all columns

List/Show all columns

no shortcut

Makes all columns which have been hidden using
Hide column
, visible

again.

This item may only be selected if the list window is open.

1.116 List/Recalc List

List/Recalc List

fiasco 69 / 167

Shortcut: A %

This menuitem calculates all positions and dimensions of the columns in
the

list
. Hidden columns are not revealed.

This item can be compared with Clean up of the Workbench.

This item may only be selected if the list window is open.

1.117 Compare/Find...

Compare/Find...

Shortcut: A F

Opens the
search requester
which can be used to define search criterions.

This item is only selectable, if the
record mode
is active and if the

current project contains at least one record.

See also:
search requester
,
Find next
,
Find previous

1.118 Compare/Find next

Compare/Find next

Shortcut: A >

Activates the next record, which matches with the search criterions,
specified using the

search requester
. You will be informed if no matching

record is found.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Search requester

fiasco 70 / 167

,
Find
,
Find previous

1.119 Compare/Find previous

Compare/Find previous

Shortcut: A <

Activates the previous record, which matches with the search criteria
specified with the

search requester
. You will be informed if no matching

record is found.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Search requester
,
Find...
,
Find next

1.120 Compare/Replace...

Compare/Replace...

Shortcut: A R

Opens the
replace requester
,which can be used for replacing data.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.121 Compare/Count...

Compare/Count...

Shortcut: A #

fiasco 71 / 167

Opens the
count requester
, which can be used to determine the number of

the records matching with the specified pattern.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

See also:
Find

1.122 Compare/Sort...

Compare/Sort...

Shortcut: A =

Opens the
sort requester
which may be used to sort the records of the

current project.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.123 Compare/Edit Filter...

Compare/Edit Filter...

Shortcut: A ~

Opens the
filter requester
, which can be used to create
filters
.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.124 Compare/Use Filter?

fiasco 72 / 167

Compare/Use Filter?

Shortcut: A ‘ (Gray key at the upper left of the keyboard)

This item can be used to switch the
filter
on or off. If no filter has

been created yet the
filter requester
will be opened.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.125 Compare/Mark...

Compare/Mark...

Shortcut: A K

Opens the
mark requester
which can be used to mark specific records that

match a pattern. This works much like the creation of filters.

Existing marks will be overwritten; marked records will be unmarked,
if they do not match.

This item is only selectable if
record mode
is active and if the

current project contains at least one record.

1.126 Compare/Filter to Marks

Compare/Filter to Marks

No Shortcut

Converts the current
filter
(active or inactive) to marks. Records that

match the filter will be marked and records that don’t match the filter
will be not marked. If the filter is active, it will be deactivated.

See also:
Compare/Edit Filter

fiasco 73 / 167

,
Compare/Marks to Filter

1.127 Compare/Marks to Filter

Compare/Marks to Filter

No Shortcut

Converts the marking of the current project into a
filter
. Each marked

record will be declared as a valid record. Every record that is not
marked will be filtered out. This filter will not be copied into the
filter requester. If you open the filter requester and proceed with Ok,
the filter created with Marks to Filter will be overwritten.

See also:
Compare/Filter to Marks

1.128 Control/Record Mode

Control/Record Mode

Shortcut: A D

This item switches the current project to
record mode
in which records

and the contents of records can be changed. If this mode is active , a
checkmark will be set to the left side of the item.

See also:
record mode
,
mask mode

1.129 Control/Mask Mode

Control/Mask Mode

Shortcut: A M

This item switches the current project to
mask mode
in which the

mask
can

be changed. If this mode is active , a checkmark will be set to the left
side of the item.

fiasco 74 / 167

See also:
Mask mode
,
Record mode

1.130 Control/ServiceWindow

Control/ServiceWindow

Shortcut: A W

This item controls the
service window
. If it is checked the service

window is open. The service window makes the most important record- and
mask-operations easier and displays some status information.

The service window serves globally for all projects.

1.131 Control/ListWindow

Control/ListWindow

Shortcut: A L

This item controls the
list window
, if it is checked, the list is open.

Each project may have its own list window.

1.132 Control/ARexx-Debug

Control/ARexx-Debug

Shortcut: A B

This activates a special debug mode of Fiasco for the
ARexx interface
. If

Fiasco commands fail, Fiasco will create a requester that contains more
detailed information about the error.

fiasco 75 / 167

1.133 Settings/Create Icons?

Settings/Create Icons?

If this item is checked, Fiasco will create icons while saving projects.

1.134 Settings/Create Backups?

Settings/Create Backups?

This item determines, whether Fiasco creates backups of old projects
while saving new projects. The backup file will be named oldname.bak.

1.135 Settings/Write Relations?

Settings/Write Relations?

If this item is checked, Fiasco will also write relations back in their
"there" projects. Otherwise, changes made in these fields will be lost.
This item should be only active if

Update Relations?
is also active, or

if you call
Project/Reload Rels
before saving. Otherwise you risk

overwriting data in the "there" project by invalid data in some fields of
the "here" project.

1.136 Settings/Update Rels?

Settings/Update Rels?

This item determines whether
relations
are updated immediately after the

input of a new key. This requires disk accesses which may become annoying
if Fiasco has to read the data from a floppy disk. If you deactivate this
item, you should also deactivate

Write relations?
, because there may be

invalid data in the project which would be written into the "there" file.
If you want to see the changes, you can update the relations using

Project/Reload Rels
.

fiasco 76 / 167

1.137 Settings/Use * as Pattern?

Settings/Use * as Pattern?

Activate this item to activate the support of the asterisk as a valid
search pattern. The * has then the same meaning as #?.

1.138 Settings/Security-Reqs?

Settings/Security-Reqs?

If this item is checked, Fiasco will warn you before deleting any fields
or records. This can prevent erroneous deleting and loss of data.

1.139 Settings/Auto-Open ServiceWin?

Settings/Auto-Open ServiceWin?

If this item is checked the
service window
will be opened automatically

when Fiasco is started.

1.140 Settings/Dynamic ServiceWin?

Settings/Dynamic ServiceWin?

If this item is checked the
service window
will be opened in a free area.

Otherwise, fixed coordinates will be used.

1.141 Settings/Talking?

Settings/Talking?

Check this item, if you want Fiasco to use the narrator.device to "speak"
certain messages.

1.142 Settings/Display...

fiasco 77 / 167

Settings/Display...

no shortcut

Opens the
display requester
which can be used to specify display options

for Fiasco. You can select whether Fiasco will open its windows on a
public screen or on its own custom screen. Furthermore, you may select
fonts for the screen and the mask.

The latter replaces the menuitem Settings/Choose Font of Fiasco 1.0.

1.143 Settings/Editor...

Settings/Editor...

no shortcut

Opens a requester that lets you specify a editor program which will be
called by Fiasco if you select the Edit Script button in the field
requesters.

1.144 Settings/Save Settings

Settings/Save Settings

Saves the current program settings in the files "env:fiasco.prefs" and
"envarc:fiasco.prefs". The settings "survive" rebooting.

1.145 Settings/Save Settings as...

Settings/Save Settings as...

Saves the settings in a file, which has been specified with a file
requester. If you save the file in "env:", the settings won’t survive a
reboot. If you save them only in "envarc:", they will only become active
after rebooting because Fiasco searches for its current settings in
"env:" and nowhere else.

1.146 Settings/Load Settings...

Settings/Load Settings...

Loads and uses a specified settings file. To use them also after reboots
you should select

fiasco 78 / 167

Save Settings
to write them to "env:" and "envarc:".

1.147 User/Edit...

User/Edit...

Shortcut: A U

Opens the
usermenu requester
which can be used to define usermenus.

1.148 The Print Window

The Print Window

The print window can be opened with Project/Print. You can control
Fiasco’s print function from there. More on the print function in the

print section
.

The print window contains these menus:

Menu Shortcut
Project

Erase
A Z

Open...
A O

Get from Mask
A M

Get from List
A L

Save
A S

Save as...
A A

Print
A P

Options...
A T

fiasco 79 / 167

Exit
A Q

Element

Element Type »
Field Ctrl F

Text Ctrl T
Formfeed Ctrl O

Add...
Return

Edit...
Return

Duplicate
Remove Del

Control

Edit Head
A H

Edit Body
A B

Edit Foot
A F

1.149 Project/Erase

Project/Erase

Shortcut: A Z

Removes all elements from the print window. After using this menuitem the
print window will be empty.

1.150 Project/Open...

Project/Open...

Shortcut: A O

Opens an file requester and reads the print layout from the selected
file. The old data will be overwritten.

fiasco 80 / 167

1.151 Project/Get from Mask

Project/Get from Mask

Shortcut: A M

This menuitem tries to fake the project mask’s layout in the print
window. The old print mask will be overwritten.

1.152 Project/Get from List

Project/Get from List

Shortcut: A L

This menuitem tries to fake the list’s layout in the print window. The
old print mask will be overwritten.

1.153 Project/Save

Project/Save

Shortcut: A S

Select Save if you want to write the current print mask to a file on
disk. This is the file Project_Name.fpr, if you haven’t selected another
using Open or Save as. The file name is displayed in the window title bar
of the print window.

1.154 Project/Save as...

Project/Save as...

Shortuct: A A

Select this menuitem if you want to save the print mask in another file
as the currently selected. The file name is displayed in the window title
bar of the print window.

1.155 Project/Print

Project/Print

Shortcut: A P

This menuitem creates the print-out of the project using the active print
mask. The exact function of this menuitem is dependent on the settings

fiasco 81 / 167

made in the
print options requester
.

1.156 Project/Options...

Project/Options...

Shortcut: A T

This menuitem opens the
print options requester
. Some print mask-specific

options may be edited here.

1.157 Project/Exit

Project/Exit

Shortcut: A Q

This menuitem closes the print window. The active print mask will be
deleted from memory.

You may also use the window’s close gadget for this purpose.

1.158 Element/Element Type

Element/Element Type

Use this submenu to select the active element type. This type will be
used by the subsequent

Element/Add
calls.

These element types may be selected:

· Field (Ctrl F)

· Text (Ctrl T)

· Formfeed (Ctrl O)

More information can be found in the
print chapter
.

fiasco 82 / 167

1.159 Element/Add...

Element/Add...

Shortcut: Return

Creates a new element at the cursor position. The element will be of the
type set in the

Element/Element Type
submenu. If the element type

supports a requester, the
element requester
will appear.

More information can be found in the
print chapter
.

Note that this menuitem has the same shortcut as
Element/Edit
. This

shortcut will Add if no element is active and Edit if an element is
active.

1.160 Element/Edit...

Element/Edit...

Shortcut: Return

Opens the
element requester
for the active element. Elements can be made

active using the mouse or the cursor keys.

Note that this menuitem has the same shortcut as
Element/Add
. This

shortcut will Add if no element is active and Edit if an element is
active.

1.161 Element/Duplicate

Element/Duplicate

No shortcut

Duplicates the active element.

fiasco 83 / 167

1.162 Element/Remove

Element/Remove

Shortcut: Del

Deletes the active element. You may only recover this element using a
saved version of the print mask.

1.163 Control/Edit Head

Control/Edit Head

Shortcut: A H

Selects the head part of the print mask for editing. The head part will
be printed before any other data. It may not contain field elements. This
menuitem, Edit Body and Edit Foot are mutually exclusive.

See the
print chapter
for more information.

1.164 Control/Edit Body

Control/Edit Body

Shortcut: A B

Selects the body part of the print mask for editing. The body part will
be printed for each record. It may contain references to fields in the
form of field elements. These references will be substituted while
printing by the field contents. This menuitem, Edit Head and Edit Foot
are mutually exclusive.

See the
print chapter
for more information.

1.165 Control/Edit Foot

Control/Edit Foot

Shortcut: A F

Selects the foot part of the print mask for editing. The foot part will
be printed after any other data. It may not contain field elements. This

fiasco 84 / 167

menuitem, Edit Body and Edit Head are mutually exclusive.

See the
print chapter
for more information.

1.166 All Requesters

All Requesters

Requesters are used by Fiasco to get information required for certain
operations. Normally, the requesters are created after selecting Fiasco
menuitem. So called EasyRequesters, which are used by Fiasco to request a
simple choice are not explained here, because they are generally easy to
understand and are described in function specific sections.

Most requesters can be controlled by using the keyboard. The
shortcuts, which are marked with an underscore, are usually single
characters without a qualifier.

The gadgets at the lower bottom of a requester are usually for
proceeding. Normally, the left-most is a positive response (Ok), while
the right-most is a negative response (Cancel). Return is the shortcut
for the positive response. The gadget is additionally emphasized. Esc is
the shortcut for the negative response.

Edit Field

Convert field

Find

Replace

Count

Sort

Filter

Mark

Usermenu

Project Options

Goto

Edit Relation

Show column

Display Options

fiasco 85 / 167

Import

Export

Print Options

Print Element

1.167 Field requester

Field requester

The field requester can be used to change the attributes of a field. Each
fieldtype has a different field requester because the gadgets of the
field requester represent the supported attributes of each fieldtype. The
supported attributes are listed with the

documentation of each field
. The

field requester will show up if you call
Add Field
,
Edit Field
or

double-click on a field.

If you proceed with Ok, all values will be checked for validity. If
one value cannot be used by Fiasco, a requester will explain the problem.

A small summary of the conditions: (presuming that these attributes
exist)

· There must be an ID.

· MaxChars must be > 0.

· Width must be > 2.

If dimensionvalues cannot be used, because other fields are too near
the field, another requester appears with Shift, Squeeze and Cancel
gadgets. Cancel does nothing other than return to the field requester.
Squeeze makes the field fit the selected space. Shift moves the field to
the left to make it fit. It is not always possible to Shift.

If you change an already existing field that stores its contents in
strings and supports MaxChars (currently

String
,
Extern
and

Datatypes
),

an additional control is implemented. If you change MaxChars to a value
which does not allow to keep all strings in their original length (that
means, some strings are longer), you will be asked if you want to

fiasco 86 / 167

truncate these strings or keep the old value.

1.168 Convert Field requester

Convert Field requester

The convert field requester can be used to change the type of one field
without the need of an ARexx script.

Field ID: This text gadget displays the ID of the field that will be
converted. Please check here to see if you have called Convert Field
for the correct field.

Old Type: Displays the current type of the field.

New Type: Select the new type of the field here. Please note that
conversions between certain field types may cause a lose of data.
Consult the

field documentation
for more information on this topic.

alternative format: Select this checkbox to active an output-format
which differs from the normal format. Please see the

field docs
whether this gadget has any effect and if so, what.

Ok: Starts the conversion and then closes the requester.

Cancel: Simply closes the requester.

1.169 Search requester

Search requester

Field: Select the field that will be searched here. The listview
displays only the IDs of real fields. Buttons, bars and text fields
are not displayed. Only one field can be selected.

Pattern: Enter here the pattern for which to search. It may be a simple
value or one with

search patterns
. This value will be also used in the

count and replace requesters.

Blurred search/Activated: If you want to use
‘‘blurred search’’
you

will have to activate this gadget.

fiasco 87 / 167

Blurred search/factor: You can control the tolerance of the "blurred
search" here. 0 searches only for exactly matching entries, 100
searches for almost all entries.

Next: Initiates the search for the next matching entry and activates it.

First: Searches for the first matching entry.

Previous: Searches backwards for the next matching entry.

Cancel: Closes the requester without any further action.

1.170 Replace requester

Replace requester

If you already know the
search requester
, you should have no problems

with this one.

Field: Select the field which will be searched here. The listview
displays only the IDs of real fields. Buttons, bars and text fields
are not displayed. Only one field can be selected.

Pattern: Enter the pattern here for which to search. It may be a simple
value or one with

search patterns
. This value will be also used in the

count and search requesters.

Replacement: Enter a value here that will be copied in the matching
entries. No patterns are possible.

Confirm: If you want to be asked for every replacing operation, you
should select this gadget.

Blurred search/Activated: If you want to use
blurred search
you will

have to activate this gadget.

Blurred search/factor: You can control the tolerance of the blurred
search here. 0 searches only for exactly matching entries, 100
searches for almost all entries.

1.171 Count requester

fiasco 88 / 167

Count requester

This requester lets you count records, which match with a patterns. More
on counting

here
. You can open this requester using
Compare/Count
.

If you are familiar with the
search requester
, you should have no

problems with this one.

Field: Select the field here that will be searched. The listview
displays only the IDs of real fields. Buttons, bars and text fields
are not displayed. Only one field can be selected.

Pattern: Enter the pattern here for which to search. It may be a simple
value or one with

search patterns
. This value will be also used in the

search and replace requesters.

Blurred search/Activated: If you want to use
blurred search
you will

have to activate this gadget.

Blurred search/factor: You can control here the tolerance of the
blurred search. 0 searches only for exactly matching entries, 100
searches for almost all entries.

Ok: proceeds and counts the matching records. The number will be
displayed at the end.

Cancel: closes the requester without any further action.

1.172 Sort requester

Sort requester

You can sort a Fiasco project with the sort requester bases on fields. It
can be opened using

Compare/Sort
.

Fields: A list of all fields of the active project is displayed here.
Clicking on one field will put it in the Sort by list.

Sort by: This list displays the fields by which the project will be

fiasco 89 / 167

sorted. The topmost field has the highest priority while sorting, i.e.
most data will be sorted according to this field. If there are entries
which contain equal data the following fields will be used. Use the
Delete to remove a field from this list. The arrows can be used to
move the field in the list.

Descending: Select this gadget to sort the data from high values to low
values (i.e. Z, Y, X, ..., C, B, A)

Ok: begins with sorting. The previously active record will be kept
active, but it is highly probable, that the number of the record will
change.

Cancel: Closes the requester without any further action.

1.173 Filter requester

Filter requester

Filters
offer the possibility of creating an overview of a group of

records. A filter creates the impression of a database that consists only
of the matching records. A filter is not created during the normal
program functions; it is created once, immediately after activating the
filter with the requester. Therefore, records added to the project while
a filter is active will be displayed regardless of their contents. The
same rules for record changes. The filter requester may be reached
through

Compare/Edit Filter
.

If are familiar with the
search requester
, you should have no

problems with this one.

Field: Select the field that will be searched here. The listview
displays only the IDs of real fields. Buttons, bars and text fields
are not displayed. Only one field can be selected.

Pattern: Enter the pattern here for which to search. It may be a simple
value or one with

search patterns
.

Blurred search/Activated: If you want to use
blurred search
you will

have to activate this gadget.

Blurred search/factor: You can control the tolerance here of the

fiasco 90 / 167

blurred search. 0 searches only for exactly matching entries, 100
searches for almost all entries.

Ok: creates the filter. The project will appear to consist only of
matching records.

Cancel: closes the requester without any further action.

1.174 Mark requester

Mark requester

Fiasco’s mark function makes it possible to distinguish specific records.
The purpose of the mark requester is to mark all records that match a
specific pattern. This requester is closely related to the filter and

search requesters
. The mark requester may be opened with
Compare/Mark
.

Field: Select the field here that will be searched. The listview
displays only the IDs of real fields. Buttons, bars and text fields
are not displayed. Only one field can be selected.

Pattern: Enter the pattern here for which to search. It may be a simple
value or one with

search patterns
.

Blurred search/Activated: If you want to use
blurred search
you will

have to activate this gadget.

Blurred search/factor: You can control the tolerance here of the
blurred search. 0 searches only for exactly matching entries, 100
searches for almost all entries.

Ok: marks the matching records. The old record marks will be lost!

Cancel: closes the requester without any further action.

1.175 Usermenu Requester

Usermenu Requester

fiasco 91 / 167

Fiasco has the ability to create own menuitems and to put CLI programs or
ARexx scripts behind them. The defined items also may be selected with
the F-Keys as well as with the mouse. F1 to F10 correspond to the first
ten items, Shift and F1 to F10 correspond to the items 11 to 20. If you
want to define more than 20 items, you will have to select the additional
items with the mouse. Furthermore, Intuition limits the number of
definable items to 63.

The items may be saved using
Settings/Save Settings
.

Items: This is the list of all existing menu items. You can Add one
item and Delete one. < and > serve to change the position of the item
in the menu.

Type: allows you to indicate whether the item will call a program or an
ARexx script.

Command: Specify the program or the ARexx script here that will be
executed.

1.176 Project Options requester

Project Options requester

The option requester contains project-related settings. It may be opened
using the menuitem

Project/Options
or the ARexx command

F_OptionsReq
.

Name: You can change the filename of the project here. The project will
be saved using this name in future. After saving, all
direction-relative operations will use the new directory.

Author: You can use this field to enter your own name! It will be stored
at the beginning of the project file.

Annotations: Yet another gadget for free use. You may store any notes
here, for example a version string (with $VER: at the beginning). It
will be written to the project file just before the author’s name.

Mask Stretching X / Y: These values are added to the width or height of
the cursor. The effect of this operation is a stretching of the mask
in X- or Y-direction. More on stretching

here
.

Windows/Open list on startup: Activate this gadget to instruct Fiasco to
open the list window when this project is loaded.

fiasco 92 / 167

Windows/List position fixed: If this gadget is active, Fiasco remembers
the position of the list window when saving the project. After that,
the list window will open at this position.

Windows/Mask position fixed: If this gadget is active, Fiasco remembers
the position of the mask window when saving the project. After that,
the mask window will open at this position.

1.177 Goto requester

Goto requester

The goto requester is one of the simplest of all the Fiasco requesters.
It may be opened with

Record/Goto
and makes it possible to activate a

record using its number. Please note that
Filters
change the record

numbers.

go to: Takes the number of the record.

Ok: Activates the record with the number.

Cancel: Oh sorry, I just forgot... %-)

1.178 Relation requester

Relation requester

This is the main interface for
relation handling
in Fiasco. It may be

opened using
Field/Edit Relations
.

Type: You have the choices 1:1 and Sum:N here. 1:1 is the standard
relation. It searches for one correct key and copies the selected data
in this project. Sum:N also searches for correct keys in the "there"
project but adds the found data and copies the result in the field
selected under Real here.

Key here: Select the key in the current project.

fiasco 93 / 167

Real here: Displays the ID of the field, whose relations are just now
edited.

Key there: Use this listview to select the key-field in the project that
has been specified under Related File. This listview displays only
fields that can contain the key (with same type).

Real there: Use this listview to select the field of the project that
has been specified under Related File and which is supposed to be the
counterpart of Real here. This field is used to read the Data, which
will be displayed in Real here. This listview only displays also
fields that look as if they could contain the data (type and max chars
must be equal).

Related File: Select the project file here relative to the directory of
the current project which contains the informations.

Ok: Loads the relations. If any errors occur while loading, the
requester will be activated again, otherwise it will return to the
main window.

Cancel: closes the requester without any further action.

1.179 Show column requester

Show column requester

This requester, which may be reached with
List/Show column
, displays the

currently hidden columns in the
list
. If you select a column and click on

Ok, that column will be inserted in the list at its old position.

Field: All hidden columns are displayed here. Select the column here
that you want to be revealed.

Ok: Inserts the column and re-displays the list.

Cancel: Closes the requester.

1.180 Display Options Requester

Display Options Requester

This requester controls the display elements of Fiasco. You can open your
own screen for Fiasco and choose the fonts for the custom screen and for

fiasco 94 / 167

the mask (Fiasco 1.0 had the menuitem Choose Font for this purpose).

Screen

Screentype: Select here, whether you want to use a public screen or an
own custom screen.

PubScreen Name: Specify here the name of the public screen, you want
Fiasco to open its windows on. This has only effect, if you select
PublicScreen for Screentype. If you leave this gadget empty, Fiasco
will use the default public screen.

Screen Mode: You may select the display mode here for the custom screen.
Clicking on the popup gadget will open an ASL screenmode requester.
This requires asl.library version 38 or higher.

Screen Font: This gadget controls whether you want to use a custom font
for the custom screen or the Workbench screen font which is controlled
by the Font Preferences.

Custom Font: If you want to use a custom font for the custom screen, you
may select it here.

Mask Font

Mask Font: This gadget controls, whether you want to use a custom font
for the mask or the system default font which is controlled by the
Font Preferences.

Custom Font: You may select a custom font for the mask here. It must be
fixed width.

Ok: Proceeds with resetting the display of Fiasco. If required, a new
screen is opened and so on.

Cancel: Closes the requester without any further action.

1.181 Import requester

Import requester

The import requester is the GUI interface to the
import function
of

Fiasco. Import allows Fiasco to read data from other database programs.
Usually this cannot be done directly, but the foreign database has to
"export" the data. You may specify various parameters for importing, so
you should be able to read nearly all import/export-formats into Fiasco.

The Fiasco distribution contains several predefined import formats,
which can be loaded using the Load button at the bottom of the import
requester.

The values that may be typed in the gadgets of the import requester

fiasco 95 / 167

are described in the Import/Export section of this document.

File: Specify here the file that contains the data to import. You
may use the picker button at the right side to select it using a file
requester.

View: Click here, if you want to view the contents of the file. Fiasco
will start asynchronously More or MultiView, if available.

Records/Start: Enter the start characters for records here. Default:
Empty.

Records/End: Enter the characters at the end of a record here. Default:
Empty.

Records/Separator: Enter the characters between two records here.
Default: \n.

Fields/Start: Enter the characters here that fields start with. Default:
".

Fields/End: Enter the characters here that fields end with. Default: ".

Fields/Separator: Enter the characters between two fields here. Default:
\t.

Misc/Skip Lines: Enter introducing characters for remarks here. Default:
Empty.

Misc/Start skip: Enter the number of lines here that will be skipped at
the start. Default: 0.

Misc/Max fields: Enter the maximum number of fields in a record here.
Can also be used if record separators are missing. Default: 100.

Options/First record contains IDs: Activate this gadget if the first
record of the file contains the IDs of the fields in the project. They
will be used by Fiasco then instead of generic IDs.

Options/Append new fields: Activate this, if you want Fiasco to create
new fields for your data and not to use existing fields. If you have
an entirely empty project you should activate this option.

Options/Overwrite old project: Removes the old data in the current
project window. If you do not select this, you data will be appended
in some manner to the existing project.

Ok: Starts the import process. Note that Fiasco may run out of memory
due to bad structure parameters and overly large files. Programs that
have problems with low memory should not run during this process.

Save: Saves the current settings in a specified file.

Load: Reads the settings from a specified file and sets them up in the
requester.

fiasco 96 / 167

Cancel: Closes the requester without any further action.

1.182 Export requester

Export requester

The export function provides the ability to share data from Fiasco with
other databases that cannot read the normal format of Fiasco databases.
See the

Import/Export section
of this document for more information about

this mechanism.

File: Specify the name of the file here that the data shall be written
to. If a file already exists with this name it will be overwritten.

Records/Start: Enter the start characters for records here. Default:
Empty.

Records/End: Enter the characters at the end of a record here. Default:
Empty.

Records/Separator: Enter the characters between two records here.
Default: \n.

Fields/Start: Enter the characters here that fields start with. Default:
".

Fields/End: Enter the characters here that fields end with. Default: ".

Fields/Separator: Enter the characters between two fields here. Default:
\t.

Options/First record contains IDs: Activate this gadget if you want
Fiasco to write the field IDs in the first record.

Options/Marked records only: Activate this gadget if you want Fiasco to
write only marked records.

Ok: Click here to start the export process.

Save: Saves the structure parameters to a selected file.

Load: Loads the structure parameters from a selected file.

Cancel: Closes the requester without any further action.

1.183 Print Options Requester

fiasco 97 / 167

Print Options Requester

The print options requester can be opened using Project/Options in the
print window. You may control some options for printing here. See the
Print section for more information on printing. The settings which have
been made here may be saved using the menuitems Project/Save and
Project/Save as of the print window.

Print to: Fiasco’s print function writes its data to this file. If
you want to use conventional printing, you should specify PRT: for the
printer here.

Print with ARexx: Activate this gadget if you want Fiasco to call the
ARexx script with the name ProgDir:ARexx/ARexxPrint.rexx after writing
the file. Fiasco will call the script with the file name specified in
Print to as its argument. In a standard Fiasco installation, this
script calls TeX to compile the file into a DVI file and prints this.
However, you may change the script to something completely different.
If you use Print with ARexx, you must not specify PRT: in Print to. A
temporary file, e.g. T:FiascoPrint, would be the best.

Only marked records: If you activate this gadget the print function will
print only records with a mark.

1.184 Print Element Requester

Print Element Requester

You can control several options of a print element in the print window
with this requester. It appears when you add with Element/Add or edit
with Element/Edit an element. The layout of a requester depends on the in
Element/Type selected element type. See the

print
section on more

information about elements.

1.185 ARexx

ARexx

ARexx is a macro programming language capable of connecting different
programs. ARexx has been developed by William S. Hawes and is part of the
system software since OS 2.0.

The ARexx port of Fiasco may be accessed externally from a script or
ARexx scripts can be called by Fiasco. For example: you can specify an
ARexx script in the

Script
field attribute and then change the contents

fiasco 98 / 167

of a field -- these scripts may adjust the value of another field or do
something else in response to the change.

To be able to communicate with Fiasco, you have to add the line
Address FIASCO to the script.

Nearly all operations that can be used with Fiasco’s GUI can be used
with the ARexx commands. Additionally, Fiasco’s functions may be extended
with ARexx. There are many ARexx commands which do exactly the same as
their GUI "brothers". In other words, certain commands may open a
requester under certain conditions. It is often possible to circumvent
this problem. It will be fixed sometime in the future. There are also
commands which always open a requester. This also may be useful for
scripts, but has been implemented primarily to give Fiasco a second menu
(Iconbars). I have experimented with ToolManager-Docks. Unfortunately, it
was too slow for fast browsing in a database.

General facts about using ARexx with Fiasco

Index of all ARexx commands

1.186 ARexx and Fiasco in general

ARexx and Fiasco in general

A Fiasco command returns in the case of success in RC 0. If a command had
problems because its environment was not proper 5 is returned. More
serious errors, like missing arguments, return 10. Fatal errors return
20.

Parameter are separated by white spaces. If single arguments are
supposed to contain spaces, simply enclosing them in quotation-marks does
not work. This is because ARexx swallows all quotation-marks. To avoid
this you should enclose the marks in the other marks, e.g. F_Open ’ "Test
Datei" ’). You have to use the single quotation marks in the outer
position because Fiasco can only handle double quotation marks. Be sure
not to use variables inside of any quotations. To use them, you have to
close the quotation, write the variable and open the quotation again, if
required. These issues do not apply for arguments which have the /F
modifier.

If a command returns a value, this is stored in RESULT. To use RESULT
, you have to put an OPTIONS RESULTS at the beginning of a script.

In an ARexx script started by Fiasco you cannot use path-searching
with Address Command, because Workbench does not copy its path to the
programs started by it.

The debugging of ARexx scripts is a bit problematic. Scripts which
have been activated using the user menu or fields, have no output stream.
All errormessages will be swallowed. If you want to test ARexx scripts,
you should run the scripts from the shell (using rx filename; Fiasco must
be in the correct status). To get more information about why a command
that has been sent to Fiasco failed, you should activate the item

fiasco 99 / 167

Control/ARexx Debug
. Fiasco will show a requester with an explanation for

the reason of the error. The script won’t continue until the requester
has been closed. You have two choices there: Continue returns the correct
error code, Ignore Error returns 0 in RC, which looks like the command
has succeeded. An additional choice is Help, which won‘t proceed, but
displays the help text for the command, which failed.

The style of the documentation of the commands is similar to the
Amiga OS Autodocs. Synopsis defines a template.

Index of all ARexx commands

1.187 Index of all ARexx commands

Index of all ARexx commands

F_AboutReq
1,2

F_ActivateField

F_AddFieldReq
1,2

F_AddRecord
2

F_ClearProject
1,2

F_CloseServiceWin
2

F_CloseList
2~~~

F_ConvertField

F_CountRecs

F_CountReq
1,2

F_DupRec
2

F_Export

F_FilterReq
1,2

fiasco 100 / 167

F_FindFirst
2

F_FindNext
2

F_FindPrev
2

F_FindReq
1,2

F_GetFieldAttributes

F_GetFieldCont

F_GetProjName

F_GetProjFullName

F_GetRecNum

F_GotoFirstRec
2

F_GotoLastRec
2

F_GotoNextRec
2

F_GotoPrevRec
2

F_GotoRec
2

F_GotoRecReq
1,2

F_Import

F_IsMarked

F_IsVirgin

F_LoadDTObject

F_Locate

F_LockGUI

F_MakeVirgin

F_MarkAllRecords
2

fiasco 101 / 167

F_MarkMatch

F_MarkRecord
2

F_NewProject
2

F_OpenServiceWin
2

F_OpenList
2

F_OpenProject

F_OpenProjectReq
1,2

F_OptionsReq
1,2

F_Progress

F_Quit
1,2

F_RemAllRecords
1,2

F_RemRecord
1,2

F_RequestChoice
1

F_RequestField
1

F_RequestFile
1

F_RequestNumber
1

F_RequestString
1

F_ResetStatus

F_SaveProject

F_SaveProjectReq
1,2

F_SaveSettings
2

fiasco 102 / 167

F_SetFieldCont

F_SetMode
2

F_SetSearchPat

F_SetSearchField

F_SetStatus

F_Sort

F_SortReq
1,2

F_SelectProj

F_ToggleAllMarks
2

F_UnlockGUI

F_UnmarkAllRecords
2

F_UnmarkRecord
2

F_UserCommand

F_VirtualMode
1 -- Commands, which may open an requester or something similar ←↩

.
2 -- Commands, which can be used to emulate menu-functions. Most commands
with an 1 have also a 2.

1.188 F_AboutReq

F_AboutReq

Name: F_AboutReq -- Open the "About" requester

Synopsis: F_AboutReq

Function: Does exactly the same as
Project/About
.

Inputs: none

Results: none

fiasco 103 / 167

1.189 F_ActivateField

F_ActivateField

Name: F_ActivateField -- activate the field in the GUI

Synopsis: F_ActivateField Field/A
rc = Success

Function: Activates the field with the specified ID in the mask. Only
fields, which appear as a string/longint gadget may be activated. If
project or window is not active, the field cannot be activated. This
command may be only called in record mode.

Inputs: Field - ID of field to activate

Results: rc = 0, if field has been activated

Bugs: Because of the automatic activation of fields performed by Fiasco,
it cannot be used in an ARexx script of a field. Fiasco activates the
field before the script is able of doing that. If F_ActivateField is
finally called, the other gadget is still active and Intuition refuses
to activate the gadget.

See also: intuition.library/ActivateGadget()

1.190 F_AddFieldReq

F_AddFieldReq

Name: F_AddFieldReq -- open the
add field requester
Synopsis: F_AddFieldReq

Function: This command does exactly the same as
Field/Add Field
. It

may be only called in
mask mode
.

Inputs:

Results:

See also:

fiasco 104 / 167

1.191 F_AddRecord

F_AddRecord

Name: F_AddRecord -- Add a new record.

Synopsis: F_AddRecord

Function: Add to the current project a new record. This record will get
active. This function may only be called in record mode.

Inputs: none

Results: none

See also:
F_RemRecord
,
Record/Add Record

1.192 F_ClearProject

F_ClearProject

Name: F_ClearProject -- clear the active Project

Synopsis: F_ClearProject Force/S

Function: Deletes all data in the current project. It will be in a
state much like after a New. If you do not specify Force, this
command does exactly the same as

Project/Erase
. That means, it is

possible, that a requester opens, which asks you whether you want to
save the current project before proceeding or cancel. To prevent
this, specify the Force parameter. This will suppress all warnings. To
find out, wheter the project is not saved, you may use

F_IsVirgin
.

Inputs: Force -- suppress all warnings

Results: none

See also: Project/Erase,
F_IsVirgin
,

fiasco 105 / 167

F_MakeVirgin

1.193 F_CloseList

F_CloseList

Name: F_CloseList -- close the
list window
Synopsis: F_CloseList

Function: This command is equal to deactivating the menuitem

Control/List
.

Inputs:

Results:

See also: Control/List

1.194 F_CloseServiceWin

F_CloseServiceWin

Name: F_CloseServiceWin -- close the service window

Synopsis: F_CloseServiceWin

Function: Closes the service window. If the window is not open, nothing
happens.

Inputs: none

Results: none

See also:
F_OpenServiceWin

1.195 F_ConvertField

F_ConvertField

fiasco 106 / 167

Name: F_ConvertField -- change the type of a field

Synopsis: F_ConvertField Field/A,NewType/A,AltFormat/S

Function: Changes the type of the named field. You cannot convert text
or button fields. May be only called in mask mode.

Inputs: Field - ID of field
NewType - New Type of field. (e.g. String)
AltFormat - Specify, if you want an alternative Format

Results: none

See also: Chapter Converting Fields

1.196 F_CountRecs

F_CountRecs

Name: F_CountRecs -- count the records

Synopsis: F_CountRecs
Result = Number_of_Records

Function: Counts the records, which are currently in the current
project. May be only called in record mode.

Inputs: none

Results: Number_of_Records - The number of records, may be zero. Note,
that Filter influence this value.

See also:

1.197 F_CountReq

F_CountReq

Name: F_CountReq -- Open the count requester

Synopsis: F_CountReq

Function: Does exactly the same as
Compare/Count
. May be only called in

record mode.

Inputs:

fiasco 107 / 167

Results:

See also: Compare/Count...

1.198 F_DupRec

F_DupRec

Name: F_DupRec -- Clone the active record

Synopsis: F_DupRec

Function: This command duplicated the active record exactly. All the
Init Cont attributes are ignored. This command does exactly the same
as

Record/Dup Record
. May be only called in record mode.

Inputs:

Results:

See also: Records/DupRecord

1.199 F_Export

F_Export

Name: F_Export -- export ata out of Fiasco

Synopsis: F_Export File/A,RecStart/K,RecEnd/K,RecSep/K,FieldStart/K,
FieldEnd/K,FieldSep/K,FirstRecIDs/K,MarkedOnly/S
rc = Success

Function: Calls the export function of Fiasco. See the Import/Export
chapter for more information about exporting. If you do not specify a
parameter, it will be empty.

Inputs: File - File to write
RecStart,RecEnd,RecSep,FieldStart,FieldEnd,FieldSep - structure
parameters
FirstRecIDs - First Record will contain field IDs
MarkedOnly - Exports only marked records

fiasco 108 / 167

Results: rc = 0, if everything went well.

See also:
F_Import
, Chapter Import/Export

1.200 F_FilterReq

F_FilterReq

Name: F_FilterReq -- open the
filter requester
Synopsis: F_FilterReq

Function: Does exactly the same as
Compare/Filter
. May be only called

in record mode.

Inputs:

Results:

See also: Compare/Filter

1.201 F_FindFirst

F_FindFirst

Name: F_FindFirst -- Search for a pattern

Synopsis: F_FindFirst Field,Blur/K,Pattern/F
Result = Number_of_Record

Function: Searches for the first matching with the pattern, which has
been either set with

F_SetSearchPat
or using the arguments. If rc is

equal zero, Result is equal to the number of the found record. This
may be accessed using

F_GotoRec
. If nothing is found, 5 is returned.

Inputs: Field - ID of the Field to search
Blur - Factor for blurred search. Specifying activates it.
Pattern - Standard search pattern.

fiasco 109 / 167

If you don‘t specify Field or Pattern, the values will be used, which
have been previously used in the search requester or have been set by
F_SetSearchPat and F_SetSearchField.

Results: rc = 0: result = Number of matching record. rc = 5: nothing
found or no pattern.

Example:

/* Find-Example.rexx */
options results
address FIASCO

count = 0

F_FindFirst "Test" "?#?" /* search for the first record in

* which the field with the ID Test

* is not empty */

do while rc = 0 /* Continue searching until

* nothing is found */

F_GotoRec Result /* activate the found record */

count = count + 1

F_FindNext "Test" "?#?" /* search for next */

end

/* All records done */

See also:

1.202 F_FindNext

F_FindNext

Name: F_FindNext -- Search for a pattern.

Synopsis: F_FindNext Field,Blur/K,Pattern/F
Result = Number_of_next_Record

Function: Searches for the next matching with the pattern, which has
been either set with

F_SetSearchPat
or using the arguments. If it

succeeds (rc = 0), Result contains the number of the found record.

fiasco 110 / 167

The record may be activated using
F_GotoRec
.

Note: The active Record is not searched by F_FindNext and F_FindPrev.
If you want to write a program, which searches all records, you have
to call at first

F_FindFirst
and then F_FindNext.

Inputs: Field - ID of the Field to search
Blur - Factor for blurred search. Specifying activates it.
Pattern - Standard search pattern.
If you don‘t specify Field or Pattern, the values will be used, which
have been previously used in the search requester or have been set by
F_SetSearchPat and F_SetSearchField.

Results: If rc = 0, result = recordnumber of next matching.
If rc = 5, nothing found or no pattern

Example: see
F_FindFirst
See also:

1.203 F_FindPrev

F_FindPrev

Name: F_FindPrev -- Search for a pattern backwards.

Synopsis: F_FindPrev Field,Blur/K,Pattern/F
Result = Number_of_prev_Record

Function: Searches for the previous matching with the pattern, which
has been either set with

F_SetSearchPat
or using the arguments. If

it succeeds (rc = 0), Result contains the number of the found record.
This may be activated using

F_GotoRec
.

Inputs: Field - ID of the Field to search
Blur - Factor for blurred search. Specifying activates it.
Pattern - Standard search pattern.
If you don‘t specify Field or Pattern, the values will be used, which
have been previously used in the search requester or have been set by
F_SetSearchPat and F_SetSearchField.

Results: if rc = 0, result contains the recordnumber of previous
matching if rc = 5, nothing found or no pattern

fiasco 111 / 167

Note: F_FindPrev is not very handy in ARexx scripts. You should use
combinations of

F_FindFirst
and

F_FindNext
instead.

See also:

1.204 F_FindReq

F_FindReq

Name: F_FindReq -- open the search requester

Synopsis: F_FindReq

Function: Opens the
search requester
. This command does exactly the

same a
Compare/Find
. The command may be only called in
record mode
.

Inputs: none

Results: none

See also:

1.205 F_GetFieldAttributes

F_GetFieldAttributes

Name: F_GetFieldAttributes -- Read the attributes of a field

Synopsis: F_GetFieldAttributes Field/A,X/S,Y/S,W=Width/S,H=Height/S,
Rexx/S,Type/S,ListX/S,ListW/S,MaxChars/S,InitCont/S,OwnInit/S,
Labels/K/N,Commands/S,Stack/S
rc = Success
Result = Attribute_Value

Function: Reads one attribute of the specified field. The value of the
attribute is returned in Result. Not every fieldtype supports all

fiasco 112 / 167

attributes, if a type does not support a particular attribute, rc will
be not equal 0. You may only specify one attribute while calling this
command. For convenience, this command may be called both in record
mode and in mask mode. This command may be also called in virtual
state.

Input: Field - ID of a field. Always required.
X - I want to know the top edge of field in cursors
Y - Left edge of field in cursors
W - Width of field in cursors
H - Height of field in cursors
Rexx - Name of ARexx script assigned to field
Type - Type of field (e.g. string, integer, etc.)
ListX - Left edge of field in list, -1 if field is hidden
ListW - Width of field in list, -1 if field is hidden
MaxChars - MaxChars attribute
InitCont - InitCont attribute. One of own, old, key OwnInit - Own
initial content
Labels - Returns the label of the specified number
Command - Command attribute of field
Stack - Stack attribute of field

Results: rc - zero, if successful.
Result - contains requested attribute, if rc = 0

See also: Field documentation

1.206 F_GetFieldCont

F_GetFieldCont

Name: F_GetFieldCont -- Read the content of a field

Synopsis: F_GetFieldCont Field/A,Record/K/N
rc = Success
result = Content

Function: Reads the content of the specified Field in the active or
specified record and returns it in result. May be only called in
record mode. This command may be also called in virtual state.

Inputs: FieldId - ID of Field
Record - Number of record (Fiasco 1.2)

Results: rc = 0 - everything Ok, result will be the content
rc = 5 - no record active
rc = 10 - arg missing, or unknown ID.
result - is equal to the current content of the field, if rc = 0.

The format:
String - the string itself.

fiasco 113 / 167

Integer - the number itself.
Float - the fp number.
Slider - the value of the slider.
Cycle - the number of the active label.
Date - the date in the format DD.MM.[YY]YY.
Time - the time in the format HH:MM:SS.
Extern - the string itself.
Datatyp.- the string itself.

See also:

1.207 F_GetProjFullName

F_GetProjFullName

Name: F_GetProjFullName -- get the name of the current project

Synopsis: F_GetProjFullName
Result = Name

Function: Returns the filename of the current project incl. path.

Note: The path is relative to the current directory of Fiasco.

Inputs:

Results: Name - Name of project incl. path.

See also:
F_GetProjName

1.208 F_GetProjName

F_GetProjName

Name: F_GetProjName -- read the filename of the current project

Synopsis: F_GetProjName
Result = Filename

Function: Returns the filename of the current project without path.
This value may be used for

F_SelectProj
.

Inputs: none

fiasco 114 / 167

Results: Result - Filename of the current project without path. A file
must not necessarily exist. This is possible, if the name has been
changed using Options and the project has not been saved.

See also:
F_GetProjFullName

1.209 F_GetRecNum

F_GetRecNum

Name: F_GetRecNum -- Get the number of the current record.

Synopsis: F_GetRecNum
Result = Number_of_record

Function: Returns the number of the active record in result. May be
used to save the initial status of the project and to restore it at
the end using

F_GotoRec
.

Inputs: none

Results: Result = Number of the record. Note that filters and other
operations may change the record numbers.

See also:

1.210 F_GotoFirstRec

F_GotoFirstRec

Name: F_GotoFirstRec -- activate the first record

Synopsis: F_GotoFirstRec

Function: activates the first record. If the current project does not
contain any records, nothing will happen. Equivalent with

Record/First
. May be only called in

record mode
.

Inputs: none

Results: none

fiasco 115 / 167

See also:

1.211 F_GotoNextRec

F_GotoNextRec

Name: F_GotoNextRec -- activate the next record

Synopsis: F_GotoNextRec

Function: Activates the record after the active one. If the active
record is the last record or the current project contains no records,
nothing will happen. Equivalent with

Record/Next
. May be only called

in
record mode
.

Inputs: none

Results: none

See also:

1.212 F_GotoLastRec

F_GotoLastRec

Name: F_GotoLastRec -- activate the last record

Synopsis: F_GotoLastRec

Function: Activates the last record. If the current project does not
contain any records, nothing will happen. Equivalent with

Record/Last
. May be only called in

record mode
.

Inputs:

Results:

See also:

fiasco 116 / 167

1.213 F_GotoPrevRec

F_GotoPrevRec

Name: F_GotoPrevRec -- activate the previous record.

Synopsis: F_GotoPrevRec

Function: Activates the record, which precedes the active record. If
the active record is the first record, nothing will happen.
Equivalent with

Record/Previous
. May be only called in
record mode
.

Inputs: none

Results: none

See also:

1.214 F_GotoRec

F_GotoRec

Name: F_GotoRec -- activate a record.

Synopsis: F_GotoRec Record/A/N

Function: Activate the record, whose number has been given as arg. If
the number was invalid, do nothing.

Inputs: RecordNumber - The number of the record. Please note, that
sorting, adding or removing records or filters may change the record
numbers.

Results:

See also:

1.215 F_GotoRecReq

fiasco 117 / 167

F_GotoRecReq

Name: F_GotoRecReq -- open the
Goto-Requester
Synopsis: F_GotoRecReq

Function: Does exactly the same as
Records/Goto
. May be only called in

record mode
.

Inputs: none

Results: none

See also:
F_GotoRec

Record/Goto

1.216 F_Import

F_Import

Name: F_Import -- Import data

Synopsis: F_Import File/A,RecStart/K,RecEnd/K,RecSep/K,FieldStart/K,
FieldEnd/K,FieldSep/K,SkipLines/k,StartLine/N/K,FirstRecIDs/S,
AppendFields/S
rc = Success

Function: Calls the import function of Fiasco. The specified file will
be imported into the current project using the specified parameters.
For more information on import and export see section

Import and Export
. You may also use the escape sequences of Fiasco.

If you do not specify a parameter, it will be empty.

Inputs: File - Name of File
RecStart,RecEnd,RecSep,FieldStart,FieldEnd,FieldSep - the structuring
characters
SkipLines - Comment introducer
StartLine - Length of initial comment
FirstRecIDs - First Record contains IDs
AppendFields - Append new fields

Results: rc = 0, if everything went well

fiasco 118 / 167

Notes: The option Overwrite old project of the import requester is not
directly supported. You have to emulate it using

F_ClearProject
.

See also:
F_Export
, Chapter Import and Export

1.217 F_IsMarked

F_IsMarked

Name: F_IsMarked -- Is the record marked?

Synopsis: F_IsMarked Record/N
rc = IsMarked

Function: Looks, whether the current or the specified record is marked.
If it is not marked, 5 is returned. This command may be also called
in virtual state.

Inputs: Record - Number of record, if not specified, current record is
used.

Results: rc = 0: Record marked, = 5: Record not marked, > 5: other
error

See also:

1.218 F_IsVirgin

F_IsVirgin

Name: F_IsVirgin -- Is the project unchanged?

Synopsis: F_IsVirgin
rc = Is_Virgin

Function: Tests, whether the current project has been changed since the
last saving. If it has been changed, Quit, Erase, Load and so on, will
put an requester.

Inputs: none

Results: rc = 0 - Unchanged

fiasco 119 / 167

rc = 5 - Changed

See also:
F_MakeVirgin

1.219 F_LoadDTObject

F_LoadDTObject

Name: F_LoadDTObject -- Load the contents of a datatypes field

Synopsis: F_LoadDTObject Field/A

Function: Loads the contents of a datatypes field, which was
"deferred".

Inputs: Field - ID of datatypes field

Results: The contents are loaded

See also:

1.220 F_Locate

F_Locate

Name: F_Locate -- Locate the Cursor

Synopsis: F_Locate X/A/N,Y/A/N

Function: Sets the cursor at the given position. At this place the next
mask operation will happen. May be only called in mask mode.

Inputs: X - X-Coordinate
Y - Y-Coordinate

Results:

Bugs: Currently not particularly useful, because there are no direct
commands for manipulating the mask.

See also:

1.221 F_LockGUI

fiasco 120 / 167

F_LockGUI

Name: F_LockGUI -- Make the GUI not accessible by the user.

Synopsis: F_LockGUI

Function: Locks the GUI of Fiasco. The pointer will appear as a "wait
clock". After locking the GUI, the ARexx script can run, without the
danger of being influenced by the user. Before the script ends,

F_UnlockGUI
must be called in order to give the control back to the

user. F_LockGUI and F_UnlockGUI may be nested.

Inputs: none

Results: none

Note: Make sure, that your scripts unlock the GUI in every case before
exiting. Use signal commands to catch errors or breaks. For example:

/* test.rexx */

address FIASCO
options results

signal on syntax
signal on halt

F_LockGUI /* Lock the GUI */

/* your code */

F_UnlockGUI /* Unlock the GUI */

exit /* And finish */

Syntax:
Halt:

F_UnlockGUI
exit

However, if a script leaves Fiasco locked, you may the following
script, which is also available in the file ARexx/UnlockGUI.rexx:

/*
* Fiasco will complain once,

* if ARexx-Debug is activated

*/

address FIASCO

fiasco 121 / 167

do forever

F_UnlockGUI

if rc ~= 0 then break

end

See also:
F_UnlockGUI

1.222 F_MakeVirgin

F_MakeVirgin

Name: F_MakeVirgin -- Say Fiasco, that the current project is unchanged

Synopsis: F_MakeVirgin

Function: Pretends, that the current project is unchanged. This
prevents certain procedures (Erase, Load, Quit,...) to put up a
requester.

Inputs: none

Results: A project, that thinks, it has not been changed since the last
saving.

Note: The ARexx commands of Fiasco 1.1 provide direct arguments to
suppress these warnings. Because of that, this function has no real
meaning. It is recommended not to use this command, in order not to
confuse the user.

See also:
F_IsVirgin

1.223 F_MarkAllRecords

F_MarkAllRecords

Name: F_MarkAllRecords -- Mark all Records

Synopsis: F_MarkAllRecords

Function: Marks all records in the current project. They will be

fiasco 122 / 167

displayed highlighted in the list. Does exactly the same as

Records/Mark All
.

Inputs:

Results:

See also:
F_UnmarkAllRecords

F_MarkRecord

1.224 F_MarkMatch

F_MarkMatch

Name: F_MarkMatch -- Mark records, which match with a pattern

Synopsis: F_MarkMatch Field/A, Blur/K, Pattern/F/A

Function: Marks all records, which match with the given pattern in the
given field. Operates similar to the filter. F_MarkMatch clears the
marks of the records, which don‘t match.

Inputs: Field -- The ID of the field, which will be examined
Blur -- Takes the blurfactor of the comparison. Specify only, if you
want to do blurred search.
Pattern -- The pattern to search for.

Results:

See also:
F_MarkRecord

F_ToggleAllMarks

1.225 F_MarkRecord

F_MarkRecord

Name: F_MarkRecord -- Mark a record

Synopsis: F_MarkRecord Record/N

Function: Marks a record in the current project. It will be displayed
highlighted in the list. This command may be also called in virtual

fiasco 123 / 167

state.

Inputs: Record/N -- Optional, if given the record specified by it‘s
number will be marked. Otherwise, the current record will be marked.

Results:

See also:
F_UnmarkRecord

F_MarkAllRecords

1.226 F_NewProject

F_NewProject

Name: F_NewProject -- Open a new project window

Synopsis: F_NewProject

Function: Opens a new project. A new window is opened and activated. It
is then entirely empty. Does exactly the same as

Project/New
.

Inputs: none

Results: none

Bugs: Should claim on error.

See also:

1.227 F_OpenList

F_OpenList

Name: F_OpenList -- Open the
list window
Synopsis: F_OpenList

Function: This command is equal to activating the menuitem
Control/List

.

Inputs:

fiasco 124 / 167

Results:

See also: Control/List
F_CloseList

1.228 F_OpenProject

F_OpenProject

Name: F_OpenProject -- Load a project

Synopsis: F_OpenProject File/A
rc = Success

Function: Tries to read a fiasco project into the current project
window. The data, which are currently in the window will be freed
without any request.

Inputs: Name - Filename of the project

Results: rc = 0, if everything went Ok,
= 10, if argument is missing or file cannot be loaded.

See also:
F_OpenProjectReq

1.229 F_OpenProjectReq

F_OpenProjectReq

Name: F_OpenProjectReq -- Open the "Open Project" ASL requester

Synopsis: F_OpenProjectReq

Function: Does exactly the same as
Project/Open
. I‘m too lazy to write

this here again. :-)

Inputs: none

Results: none

Note: The user may have canceled the request

See also:
F_OpenProject

fiasco 125 / 167

Project/Open

1.230 F_OpenServiceWin

F_OpenServiceWin

Name: F_OpenServiceWin -- Open the service window

Synopsis: F_OpenServiceWin

Function: Opens the
service window
, if it is not already open.

Inputs: none

Results: none

See also:
F_CloseServiceWin

1.231 F_OptionsReq

F_OptionsReq

Name: F_OptionsReq -- Open the
options requester
for the current

project

Synopsis: F_OptionsReq

Function: Does exactly the same as
Project/Options
Inputs: none

Results: none

See also:

1.232 F_Progress

fiasco 126 / 167

F_Progress

Name: F_Progress -- give the user a sense of the duration of a
operation

Synopsis: F_Progress Done/A/N, Max/A/N

Function: Displays a nice progress bar in the service window, as known
of Sort or Open Project. You should reset the status gadget with

F_ResetStatus
when the operation has completed.

Inputs: Done -- the number of data items currently processed.
Max -- the number of all data items.

Results:

See also:
F_SetStatus

1.233 F_Quit

F_Quit

Name: F_Quit -- close the current project

Synopsis: F_Quit Force/S

Function: Closes the current project. If you do not specify Force, this
command does exactly the same as

Project/Quit
. That means, it is

possible, that a requester opens, which asks you whether you want to
save the current project before proceeding or cancel. To prevent
this, specify the Force parameter. This will suppress all warnings. To
find out, wheter the project is not saved, you may use

F_IsVirgin
.

Inputs: Force -- suppress all warnings.

Results: none

Notes: If the current project is closed, another project will be
activated, or, if there is no other project, Fiasco will be shut down.
An ARexx script should not rely on the order, in which the next
project will be activated.

See also:

fiasco 127 / 167

1.234 F_RemAllRecords

F_RemAllRecords

Name: F_RemAllRecords -- Delete all records of project

Synopsis: F_RemAllRecords Force/S

Function: Removes all records of the current project. If you do not
specify the Force parameter, this command does exactly the same as
Record/Remove all. That means, that a requester may show up, which
will ask you, whether you really want to remove all records. To
prevent this behavior, specify Force. This command may only be called
in record mode.

Inputs: Force - suppress all warnings

Results: A project without any records.

See also:

1.235 F_RemRecord

F_RemRecord

Name: F_RemRecord -- Delete the active record

Synopsis: F_RemRecord Force/S

Function: Removes the active record and activates the next. If you do
not specify the Force parameter, this command does exactly the same as
Record/Remove. That means, that a requester may show up, which will
ask you, whether you really want to remove this record. To prevent
this behavior, specify Force. This function may only be called in
record mode.

Inputs: Force -- suppress all warnings.

Results: none

See also:
F_AddRecord
,
Record/Remove Record

fiasco 128 / 167

1.236 F_RequestChoice

F_RequestChoice

Name: F_RequestChoice -- request a choice

Synopsis: F_RequestChoice Body/A,Gadgets/A,Title/K
result = Selection

Function: Creates an intuition easy-requester with the specified
parameters. Works very similar to the CLI command Requestchoice. The
differences: Slightly different parameters, puts the requester up on
Fiasco’s screen. This command may be also called in virtual state.

Inputs: Body - Main text of requester.
Gadgets - Gadgets at the bottom of requester. Each choice must be
separated by a |.
Title - Title of requester.

Results: result - Number of selected gadget, 0 for the rightmost one.

See also:

1.237 F_RequestField

F_RequestField

Name: F_RequestField -- request a field ID (1.2)

Synopsis: F_RequestField Text/A/F
rc = Success
result = SelectedField

Function: Opens a requester with a list of all fields of the active
project. The requester can display an additional message given in the
Text argument. The user can select one field and click on Ok or can
Cancel the requester. This command may be also called in virtual
state.

Inputs: Text - Text to display in the requester. May contain newlines
(*N).

Results: rc = 0 if user clicked on Ok, = 5 if cancelled.
result = ID of selected field if rc = 0.

See also:

fiasco 129 / 167

1.238 F_RequestFile

F_RequestFile

Name: F_RequestFile -- request a file

Synopsis: F_RequestFile File,Pattern/K,Title/K,Savemode/S,Drawersonly/S,
Noicons/S
rc = Success
result = SelectedFile

Function: Puts up an ASL file requester. Works very similar to the CLI
command Requestfile. The differences: Slightly different parameters,
puts the requester up on Fiasco’s screen. This command may be also
called in virtual state.

Inputs: File - Initial File including path for the requester
Pattern - Initial Pattern
Title - Title for the requester
Savemode - Activates savemode: Black background, no selection via
doubleclick
Drawersonly - Displays only Drawers
Noicons - Filters Icons

Results: rc = 0, if user selected a file, otherwise user canceled.
result = selected file, if rc = 0

See also:

1.239 F_RequestNumber

F_RequestNumber

Name: F_RequestNumber -- Request a number (Fiasco 1.2)

Synopsis: F_RequestNumber DefaultValue/N,Title/K,Text/K/A
rc = Success
result Requested_Number

Function: Asks the user to input an integer number. He may cancel the
request. You can supply additional information using the Text
argument.

Inputs: DefaultValue - Value of integer gadget on startup. Will be zero
if not specified.
Title - Optional. Window title of requester.
Text - Additional text to display in requester. May contain newlines
(*n). Please note that this argument is required and must be specified
with a leading keyword. This is for compability with future versions
of Fiasco which may not require the Text argument.

fiasco 130 / 167

Results: rc = 0 if user clicked on Ok otherwise not equal zero.
result = final value of integer gadget if rc = 0.

See also:
F_RequestString

1.240 F_RequestString

F_RequestString

Name: F_RequestString -- Request a string (Fiasco 1.2)

Synopsis: F_RequestString DefaultValue,Title/K,Text/K/A
rc = Success
result Requested_String

Function: Asks the user to input a string. He may cancel the request.
You can supply additional information using the Text argument.

Inputs: DefaultValue - Value of string gadget on startup. Will be empty
if not specified.
Title - Optional. Window title of requester.
Text - Additional text to display in requester. May contain newlines
(*n). Please note that this argument is required and must be specified
with a leading keyword. This is for compability with future versions
of Fiasco which may not require the Text argument.

Results: rc = 0 if user clicked on Ok otherwise not equal zero.
result = final value of string gadget if rc = 0.

See also:
F_RequestNumber

1.241 F_ResetStatus

F_ResetStatus

Name: F_ResetStatus -- restores the normal informations in the status
gadget

Synopsis: F_ResetStatus

Function: Sets the status gadget of the service window to the normal
contents. This is RecNum / AllRecs in the Record Mode or X / Y in the
mask mode. You should use this call to reset the status informations
set with

F_SetStatus

fiasco 131 / 167

.

Inputs:

Results:

See also:

1.242 F_SaveProject

F_SaveProject

Name: F_SaveProject -- Save the current project

Synopsis: F_SaveProject

Function: Save the current project under the old name on disk. Does
exactly the same as

Project/Save
.

Inputs: none

Results: none

Bugs: Does not inform the script about errors.

See also:
F_SaveProjectReq

1.243 F_SaveProjectReq

F_SaveProjectReq

Name: F_SaveProjectReq -- Open filereq and save project under new name

Synopsis: F_SaveProjectReq

Function: Does exactly the same as
Project/Save As...
.

Inputs: none

Results: none

Note: The user may have canceled the request

fiasco 132 / 167

See also:
F_SaveProject

1.244 F_SaveSettings

F_SaveSettings

Name: F_SaveSettings -- Save the current program settings.

Synopsis: F_SaveSettings

Function: Does exactly the same as
Settings/Save Settings
.

Inputs: none

Results: none

See also: Settings/Save Settings

1.245 F_SelectProj

F_SelectProj

Name: F_SelectProj -- activate an already load project

Synopsis: F_SelectProj Name/A
rc = Success

Function: Activates a project, which stays already in memory. The
filename without path is used to identify the project. This may be the
name, which has been obtained using

F_GetProjName
. All following

commands refer to the new project.

Inputs: Name - Name of project without path.

Results: rc = 5, if project is already active.
= 10, if argument is missing, or there is no such project.

See also:
F_GetProjName

fiasco 133 / 167

1.246 F_SetFieldCont

F_SetFieldCont

Name: F_SetFieldCont -- Change the content of a field.

Synopsis: F_SetFieldCont Field/A,Record/K/N,Cont/A/F
rc = Success

Function: Sets the content of the specified field in the active or
specified record to the specified content. May be only called in

record mode
. This command may be also called in virtual state.

Inputs: Field - Identificationname of the field
Record - Number of record (Fiasco 1.2)
Cont - New content of the Field. This arg takes the whole input
inclusive spaces. The Interpretation of this arg depends on the
fieldtype:
String - is copied directly
Integer - Numbers are read directly, other things are 0
Float - dto.
Boolean - 1 or TRUE = selected, 0 or FALSE = not selected
Slider - Number is read. Bad numbers will be adjusted.
Cycle - Number or name of label is taken.
Date - Date in Format DD.MM.[YY]YY is taken.
Time - Time in Format HH:MM:SS is taken.
Extern - is copied directly
Datat. - is copied directly

Results: rc = 0 - no error
rc = 5 - no record is active
rc = 10 - missing arg or bad FieldId

See also:

1.247 F_SetMode

F_SetMode

Name: F_SetMode -- Select the editing mode

Synopsis: F_SetMode Mask/S, Records/S
rc = Success

Function: Activates the specified mode for the current project.

Inputs: Mask - activates
mask mode

fiasco 134 / 167

.
Records - activates

record mode
.

Mask and Records are mutually exclusive.

Results: rc = 0 - no error
= 5 - the project was already in the specified mode
= 10 - missing or bad arg

See also:

1.248 F_SetSearchField

F_SetSearchField

Name: F_SetSearchField -- Set the field to search

Synopsis: F_SetSearchField Field/A
rc = Success

Function: Sets the field, which will be searched by
F_FindFirst
and

F_FindNext
.

Inputs: Field - The Id of the field, which shall be searched.

Results: returns 10 in rc, if the argument is missing or the id is
unknown. otherwise 0 is returned.

Notes: You don‘t need this function for simple searching, because
Fiasco 1.1 allows passing these parameters directly with the search
functions.

See also:
F_SetSearchPat

1.249 F_SetSearchPat

F_SetSearchPat

Name: F_SetSearchPat -- Set the pattern to search for

Synopsis: F_SetSearchPat Pattern/A/F

fiasco 135 / 167

rc = Success

Function: Sets the searchpattern for the active project. If you also
have specified a search field using

F_SetSearchField
, you may search

for matching entries using
F_FindFirst
and

F_FindNext
. The value

will be also used in the search requester.

Inputs: searchpattern - a string to search for

Results: rc = 0 - everything ok.
rc = 10 - no argument
rc = 20 - systemfailure (no memory, etc.)

Notes: You don‘t need this function for simple searching, because
Fiasco 1.1 allows passing these parameters directly with the search
functions.

See also:

1.250 F_SetStatus

F_SetStatus

Name: F_SetStatus -- display a status string to the user

Synopsis: F_SetStatus String/A

Function: Displays the given string in the status gadget of the

service window
. If the service window is not open, nothing will be

done.

Inputs: String -- the string to be displayed

Results:

See also:
F_ResetStatus

1.251 F_Sort

fiasco 136 / 167

F_Sort

Name: F_Sort -- Sort the records of the current project

Synopsis: F_Sort Field/A/M,Descending/S

Function: Sorts the records of the current project according to the
alphabetical or equivalent priority of the contents of the specified
fields.

Inputs: Field -- The ID of a field to sort after. Starting with Fiasco
1.2 you may specify several fields to sort after. The first field has
the highest priority while sorting.
Descending -- Specify this, if you want the sorting to be backwards.

Results:

See also:
F_SortReq
,
Compare/Sort

1.252 F_SortReq

F_SortReq

Name: F_SortReq -- Open the sort requester

Synopsis: F_SortReq

Function: Does exactly the same as
Compare/Sort
. May be only called in

record mode.

Inputs:

Results:

See also: Compare/Sort...

1.253 F_ToggleAllMarks

F_ToggleAllMarks

fiasco 137 / 167

Name: F_ToggleAllMarks -- toggle the marks of all records.

Synopsis: F_ToggleAllMarks

Function: Clears the marks on records, which were marked and sets the
marks on previously unmarked records. Does exactly the same as

Records/Toggle All Marks
.

Inputs:

Results:

See also:
F_MarkRecord

1.254 F_UnlockGUI

F_UnlockGUI

Name: F_UnlockGUI -- Unlock the GUI of Fiasco

Synopsis: F_UnlockGUI
rc = Success

Function: Unlock the GUI, which has been previously locked using

F_LockGUI
. The user has again access to Fiasco. F_LockGUI and

F_UnlockGUI may be nested.

Inputs: none

Results: rc not equal 0, if no lock was present.

See also:
F_LockGUI

1.255 F_UnmarkAllRecords

F_UnmarkAllRecords

Name: F_UnmarkAllRecords -- Clear the mark on all records.

Synopsis: F_UnmarkRecord

Function: Clears all marks of the records in the current project. They

fiasco 138 / 167

will be rendered in a normal appearance in the list. Does exactly the
same as

Records/Unmark All
.

Inputs:

Results:

See also:
F_UnmarkRecord

F_MarkAllRecords

1.256 F_UnmarkRecord

F_UnmarkRecord

Name: F_UnmarkRecord -- Clear the mark on a record

Synopsis: F_UnmarkRecord Record/N

Function: Clears the mark on a record, which has be set previously by

F_MarkRecord
or using the GUI. The record will be rendered in a

normal appearance in the list. This command may be also called in
virtual state.

Inputs: Record/N -- Optional number of record to unmark. If not given,
the current record will be unmarked.

Results:

See also:
F_UnmarkAllRecords

F_MarkRecord

1.257 F_UserCommand

F_UserCommand

Name: F_UserCommand -- Calls a userdefined command.

Synopsis: F_UserCommand Command/N/A

Function: Calls a command, which has been defined in the "User" menu.

fiasco 139 / 167

Inputs: Command - Number of command, counted from zero. If this number
does not exits, nothing will be done.

Results: none

Note: This command is only for implementing a icon bar or similar
things. It should not be used in normal scripts, because the command
may change freely.

See also:

1.258 F_VirtualMode

F_VirtualMode

Name: F_VirtualMode -- Is this script called from virtual mode?

Synopsis: F_VirtualMode rc = Virtual

Function: Tests, whether the running script is called by Fiasco in
virtual mode or in normal mode.

Inputs:

Results: rc = 0: virtual status
rc <> 0: normal status

See also: Section virtual fields

1.259 Example Projects

Example Projects

The directory databases of the Fiasco distribution contains several
Fiasco projects. Some of them may be also used for own purposes.

Addresses
Addressbook

DatatypesDemo
Demonstration of datatypes Fieldtype

FamilyTree
stores data about you ancestors.

fiasco 140 / 167

Videos
Catalog of video tapes

PictureDatabase
Manages your pictures

FAQs
Manages textfiles

1.260 Addresses

Addresses

The Address project can be used as a simple addressbook. It contains
fields for Name, Address, Phone, etc. The project uses relations to
translate the abbreviations of country names (like "I" for Italy) to the
long names.

The fields for Phone, Fax or Zipcode are string fields, because they
also have to take characters like "/" or must have a leading "0" (which
would be swallowed by a integer field).

An additional Idea would be to use relations to search for the name
of the city using the zip code.

1.261 Datatypes Demo

Datatypes Demo

This project is a easy Demonstration of the
Datatypes fieldtype
, which

requires the datatypes.library. For this reason, it is only available for
users of Amiga OS 3.0 or higher. The mask contains three fields, which
can be used to display all Data, which have the correct datatypes
installed.

Two fields have scrollbars at the bottom and at the right side. You
can use these scrollers to move the contents of the field. The
stringgadget below the display contains the name of the file. The gadget
with the arrow down at the left side of the string gadgets can be used to
open a filerequester for editing the filename.

One field has a button marked with an ‘S’. This button opens a
filerequester, which allows you to select a file, in which the currently
displayed data are saved in. Fiasco writes the data in IFF format.

The field at the upper right has the ‘immediate play’ attribute,
which plays the data --- if playable --- directly after loading the data.

The browsing between records may get a bit slower, because the data
are stored in an external file and must be loaded first.

fiasco 141 / 167

1.262 FamilyTree

FamilyTree

The family tree consists of the projects "persons.fdb" and
"families.fdb". "persons.fdb" contains all persons, which are used in the
family tree. You may also enter sex, date of birth, etc. here.

These data are used by "families.fdb" with relations, to get names of
spouses, children, etc. Additionally, there are fields for marriage and
divorce. Caused by the intensive use of relations, this project only
contains 10 "real" fields, which are stored on disk. The other 12 fields
are loaded from "persons".

1.263 Videos

Videos

The video database can be used to manage your homevideo collection. The
database consists of two projects: "movies.fdb" and "tapes.fdb". "Movies"
takes the informations for each movie (Genre, Director, etc.). The field
"Tape" connects each film with one tape, which can be found in "tapes".
Here is the play length of each tape defined. An ARexx script calculates
the left free space on the tapes.

1.264 Picture Database

Picture Database

This databases uses the Datatypes fieldtype and is only usable, if you
have Amiga OS 3.0 or better. The Datatypes field has the "defer"
attribute, which means, that Fiasco won‘t load the data immediately. To
read the data, you have to click in the string gadget of the field and
press Return.

The string field under the datatypes field takes a description of the
picture.

The button "Scan directory" can be used to read a freely selectable
directory in the database. "Show on screen" displays the picture on an
own screen. This button currently only works, if you use absolute paths
for the graphics.

1.265 FAQs Database

FAQs Database

This database manages textfiles. For displaying the files, it uses the
program Most by Uwe Röhm. If you prefer another textdisplay program,

fiasco 142 / 167

which has an ARexx port, you may adopt the ARexx scripts.

The string field at the top of the mask takes the name of the
textfile. Under it there are three buttons to control the database. "Scan
dir" reads a selectable directory into this database. "View" displays the
currently active text file. The most complex button is "Search". It can
be used to search through the all files in the database for a string. If
you click on it, a window opens, which asks you for an string to search
for. Then it asks for a record to start the search. If you simply hit
enter, it will begin at the first record. Then you are asked, whether you
want to search all records or only the marked ones. After that Fiasco
asks you, whether you want to write the results to a file. Then the last
option comes, "Interactive searching". If you activate this, you will be
asked for every found string, if you want to display the file at this
place. After that the searching starts. If you want to break the
searching, simply hit Ctrl-C.

The database contains the data for the FAQ (Frequently Asked
Question) files on the Meeting Pearls II CD-ROM. If you don‘t own the CD
ROM, use Record/Delete all Records to get rid of the data.

1.266 All Searchpatterns

All Searchpatterns

Pattern Supported field types function

--no pattern-- all types exact matching.

#?
String
,
Extern
,
Datatypes

An unknown string with undefined length.

?
String
,
Extern
,
Datatypes

An unknown character.

> x
Integer
,
Slider

A number, which is greater than x.

< x
Integer
,

fiasco 143 / 167

Slider
A number, which is less than x.

>= x
Integer
,
Slider

A number, which is greater or equal x.

<= x
Integer
,
Slider

A number, which is less or equal x.

!=
Integer
,
Slider

A number, which is not equal x.

Detailed descriptions are available with the
field documentations
.

1.267 Relation Checklist

Relation Checklist

· create key field "there". Optionally activate "unique key".

· create real field "there". In case of string, extern or datatypes,
remember "max chars".

· save project.

· create key field "here". Must be the same type as "there".

· create real field "here". Must be the same type as "there". In the
case of string, extern or datatypes, "max chars" must be equal.

· save project.

· open relation requester for real field "here".

· select key "here"

· select relation file

fiasco 144 / 167

· select key and real field "there". If the correct field is not
displayed, check type and in case of string, extern or datatypes max
chars.

· select Ok

1.268 Implementation of the Clipboard support

Implementation of the Clipboard support

The menuitems
Cut Record
,
Copy Record
and

Paste Record
use the clipboard

to store data temporarily. The clipboard of the Amiga OS is meant to
provide a interface for different programs to share certain types of
data. To make this possible, the clipboard may only contain IFF data.

Fiasco uses unit 0 of the clipboard and stores its data in IFF-FTXT
files with a specific format. Each field gets a separate chunk. In this
chunk the field content is stored in ASCII format.

The order of the chunks depends on the internal field list of Fiasco.
Fiasco also uses this order to find out, which data belongs to which
field while pasting the clipboard-contents.

With most other programs, you cannot create such structured IFF-FTXT
files. The pasting in other programs is better supported. For example the
conclip- program pastes the data correctly, while MultiView displays only
the first chunk.

1.269 Bugs

Bugs

If you find some bugs in Fiasco, send a detailed description to
me
.

Please include information about your processor, OS version and other
configuration.

These bugs are currently known:

· The frame of the list window flashes sometimes in a weird way
under Kickstart 37.x

fiasco 145 / 167

· ARexx seems to have problems with filenames, which contain spaces. The
name is only interpreted to the the first space. This affects the full
path, because Fiasco expands the name to the full path before calling
ARexx scripts.

· Seems to leave sometimes some memory allocated.

· Produces with asl.library 40.6 and Kickstart 40.70 MungWall hits after
closing a filerequester. I think this is a bug of asl or intuition but
not of Fiasco.

1.270 To do

To do

Fiasco is of course not perfect, at all. Here is a list of all things,
which will be perhaps added at a later point (no guarantee!). If you have
an Idea, send it to

me
!

· Better scrolling in the mask window. I currently use GadTools
gadgets, which have to be recreated if you want to change their
positions. I plan to emulate the used gadgets.

· New searchfunction.

· Sorting should get faster.

· New ARexx commands: ReadRecord and WriteRecord. Should read all
fieldcontents and put them in ARexx variables with the field id as
names.

· New searchpatterns.

· Hiding of fields in the mask.

· Stringfields, which support multiple lines

· Reversed logic while searching and counting

· AppWindows for Datatypes and Extern Fields

· "Packing" of projects: search for unused fields and make used as small
as possible.

· Checking, whether a similar record already exists (automatically)

· Ability to specify the order, how the fields are activated after a
Return.

fiasco 146 / 167

· Fiasco should not have to read the whole file. (To save memory)

· Iconify projects

· List fieldtype with "Add" and "Del"

· "ARexx hook" for extending relations

· Better support of mask mode in ARexx

· "Input only once" field attribute

· Ability to influence the order, string, integer, etc. fields are
activated

· OpenNewProject function

1.271 How to get contact

How to get contact

Send gifts, ideas, bug reports, etc. to:

Nils Bandener
Dekanatsgasse 4
D-34369 Hofgeismar
Germany

Internet: Nils@dinoex.sub.org

1.272 Index

Index

#?
Patterns

’
Patterns

?
Patterns

about menuitem
Project/About...

add element menuitem
Element/Add...

fiasco 147 / 167

add field menuitem
Field/Add Field...

Add gadget
Add

add record menuitem
Record/Add Record

Address Command
ARexx and Fiasco in general

alternative format
Converting Fields

AmigaGuide
Fiasco’s Graphic User Interface

AmigaGuide
Requirements

annotations
Project Options requester

ARexx
ARexx

ARexx debug menuitem
Control/ARexx-Debug

ARexx/debugging
ARexx and Fiasco in general

ARexx/print
Printing with ARexx

ARexx/quotes
ARexx and Fiasco in general

ARexx/searching with
Searching with ARexx

ARexxPrint.rexx
Printing with TeX

ASCII
Slider fieldtype

ASCII
Import and Export

attributes/script
ARexx

auto-open service win menuitem
Settings/Auto-Open ServiceWin?

fiasco 148 / 167

backslash
How to Specify Special Characters

backups
Settings/Create Backups?

bar
Bar fieldtype

boolean
Boolean Fieldtype

button
Button fieldtype

C
Slider fieldtype

C
How to Specify Special Characters

Changing position of columns
List

character-classes in im-export
How to Specify Special Characters

checkbox
Boolean Fieldtype

choices
Cycle fieldtype

clean up
List

clipping of print elements
The Print Mask

convert field menuitem
Field/Convert Field...

convert field requester
Convert Field requester

copy record menuitem
Record/Copy Record

count menuitem
Compare/Count...

count requester
Count requester

counting matches
Count

fiasco 149 / 167

create backups menuitem
Settings/Create Backups?

create icons menuitem
Settings/Create Icons?

cursor
F_Locate

cursor
Fiasco’s Graphic User Interface

cut record menuitem
Record/Cut Record

cycle
Cycle fieldtype

data structure
Basic elements of a Database

datatypes
Datatypes fieldtype

datatypes/animation
Datatypes fieldtype

datatypes/immediate playing
Datatypes fieldtype

datatypes/scrolling
Datatypes fieldtype

datatypes/sound
Datatypes fieldtype

datatypes/speeding up record changes
Datatypes fieldtype

date
Date fieldtype

debugging of ARexx scripts
ARexx and Fiasco in general

delete all records menuitem
Record/Delete all Records

Delete gadget
Delete

delete record menuitem
Record/Delete Record

descending
Sort requester

fiasco 150 / 167

display menuitem
Settings/Display...

display options requester
Display Options Requester

dragging
Fiasco’s Graphic User Interface

duplicate element menuitem
Element/Duplicate

duplicate field menuitem
Field/Duplicate Field

duplicate record menuitem
Record/Duplicate Record

dynamic service win menuitem
Settings/Dynamic ServiceWin?

edit body menuitem
Control/Edit Body

edit element menuitem
Element/Edit...

edit field menuitem
Field/Edit Field...

edit filter menuitem
Compare/Edit Filter...

edit foot menuitem
Control/Edit Foot

edit head menuitem
Control/Edit Head

edit relation menuitem
Field/Edit Relation...

edit usermenu menuitem
User/Edit...

edit usermenu requester
Usermenu Requester

editing the print mask
The Print Mask

editor menuitem
Settings/Editor...

eepic
Printing with ARexx

fiasco 151 / 167

element type submenu
Element/Element Type

erase menuitem
Project/Erase

erase menuitem in print window
Project/Erase

escape sequences in im-export
How to Specify Special Characters

escape/patterns
Patterns

exit menuitem
Project/Exit

export
Import and Export

export menuitem
Project/Export...

export/requester
Export requester

export/required marking chars
Structure of Import/Export files

export/structure of files
Structure of Import/Export files

extern
Extern fieldtype

external data
Import and Export

factor
Blurred Search

false
Boolean Fieldtype

field requester
Field requester

fields
Fields

fields/ARexx
Standard Attributes

fields/attributes
Field requester

fiasco 152 / 167

fields/bar
Bar fieldtype

fields/boolean
Boolean Fieldtype

fields/button
Button fieldtype

fields/converting
Converting Fields

fields/cycle
Cycle fieldtype

fields/datatypes
Datatypes fieldtype

fields/date
Date fieldtype

fields/default value
Standard Attributes

fields/double clicking
Fiasco’s Graphic User Interface

fields/dragging
Fiasco’s Graphic User Interface

fields/extern
Extern fieldtype

fields/float
Float Fieldtype

fields/identification of a
Standard Attributes

fields/init cont
Standard Attributes

fields/integer
Integer Fieldtype

fields/shifting
Field requester

fields/slider
Slider fieldtype

fields/squeezing
Field requester

fields/string
String Fieldtype

fiasco 153 / 167

fields/text
Text fieldtype

fields/time
Time fieldtype

fields/validity of attributes
Field requester

fields/virtual
Standard Attributes

fields/width
Standard Attributes

fieldtype menuitem
Field/Fieldtype

File card structure
Mask

file cards
Records

filter
Filter

filter requester
Filter requester

filter to marks menuitem
Compare/Filter to Marks

filter/disabling
Filter

find menuitem
Compare/Find...

find next menuitem
Compare/Find next

find previous menuitem
Compare/Find previous

find requester
Search requester

first record menuitem
Record/First Record

float
Float Fieldtype

floppy disk drives
Technical notes about Relations

fiasco 154 / 167

fonts
Mask

foreign data
Import and Export

formatstring
Slider fieldtype

function keys
Usermenu Requester

F_AboutReq
F_AboutReq

F_ActivateField
F_ActivateField

F_AddFieldReq
F_AddFieldReq

F_AddRecord
F_AddRecord

F_ClearProject
F_ClearProject

F_CloseList
F_CloseList

F_CloseServiceWin
F_CloseServiceWin

F_ConvertField
F_ConvertField

F_CountRecs
F_CountRecs

F_CountReq
F_CountReq

F_DupRec
F_DupRec

F_Export
F_Export

F_FilterReq
F_FilterReq

F_FindFirst
F_FindFirst

F_FindNext
F_FindNext

fiasco 155 / 167

F_FindPrev
F_FindPrev

F_FindReq
F_FindReq

F_GetFieldAttributes
F_GetFieldAttributes

F_GetFieldCont
F_GetFieldCont

F_GetProjFullName
F_GetProjFullName

F_GetProjName
F_GetProjName

F_GetRecNum
F_GetRecNum

F_GotoFirstRec
F_GotoFirstRec

F_GotoLastRec
F_GotoLastRec

F_GotoNextRec
F_GotoNextRec

F_GotoPrevRec
F_GotoPrevRec

F_GotoRec
F_GotoRec

F_GotoRecReq
F_GotoRecReq

F_Import
F_Import

F_IsMarked
F_IsMarked

F_IsVirgin
F_IsVirgin

F_LoadDTObject
F_LoadDTObject

F_Locate
F_Locate

F_LockGUI
F_LockGUI

fiasco 156 / 167

F_MakeVirgin
F_MakeVirgin

F_MarkAllRecords
F_MarkAllRecords

F_MarkMatch
F_MarkMatch

F_MarkRecord
F_MarkRecord

F_NewProject
F_NewProject

F_OpenList
F_OpenList

F_OpenProject
F_OpenProject

F_OpenProjectReq
F_OpenProjectReq

F_OpenServiceWin
F_OpenServiceWin

F_OptionsReq
F_OptionsReq

F_Progress
F_Progress

F_Quit
F_Quit

F_RemAllRecords
F_RemAllRecords

F_RemRecord
F_RemRecord

F_RequestChoice
F_RequestChoice

F_RequestField
F_RequestField

F_RequestFile
F_RequestFile

F_RequestNumber
F_RequestNumber

F_RequestString
F_RequestString

fiasco 157 / 167

F_ResetStatus
F_ResetStatus

F_SaveProject
F_SaveProject

F_SaveProjectReq
F_SaveProjectReq

F_SaveSettings
F_SaveSettings

F_SelectProj
F_SelectProj

F_SetFieldCont
F_SetFieldCont

F_SetMode
F_SetMode

F_SetSearchField
F_SetSearchField

F_SetSearchPat
F_SetSearchPat

F_SetStatus
F_SetStatus

F_Sort
F_Sort

F_SortReq
F_SortReq

F_ToggleAllMarks
F_ToggleAllMarks

F_UnlockGUI
F_UnlockGUI

F_UnmarkAllRecords
F_UnmarkAllRecords

F_UnmarkRecord
F_UnmarkRecord

F_UserCommand
F_UserCommand

gadgets
Mask

gadtools.library
Mask

fiasco 158 / 167

get from list menuitem
Project/Get from List

get from mask menuitem
Project/Get from Mask

giftware
Giftware

gimme unique key
Creating Relations

goto record menuitem
Record/Goto...

goto record requester
Goto requester

GraphPrint.rexx
Printing with ARexx

gtlayout.library
Requirements

GUI
Fiasco’s Graphic User Interface

Hawes, William S.
ARexx

help
Fiasco’s Graphic User Interface

help
Requirements

here project
Creating Relations

hide column menuitem
List/Hide column

hierarchical structures
Introduction

icons
Settings/Create Icons?

IFF
Datatypes fieldtype

import
Import and Export

import menuitem
Project/Import...

fiasco 159 / 167

import/requester
Import requester

import/required marking chars
Structure of Import/Export files

import/structure of files
Structure of Import/Export files

integer
Integer Fieldtype

internal print function
Internal Print Function

key
Creating Relations

Knuth, Donald E.
Printing with TeX

last record menuitem
Record/Last Record

list
List

list window menuitem
Control/ListWindow

list/field IDs
List

List/Hiding columns
List

list/layout
List

list/marks
Using Marks

list/selecting records
List

list/shifting columns
List

load settings menuitem
Settings/Load Settings...

localization
Requirements

low memory situations
Importing of Data

fiasco 160 / 167

low memory situations
Technical notes about Relations

mark all records menuitem
Record/Mark all Records

mark menuitem
Compare/Mark...

mark record menuitem
Record/Mark Record

mark requester
Mark requester

marking characters
Structure of Import/Export files

marks
Using Marks

marks to filter menuitem
Compare/Marks to Filter

mask
Mask

mask mode
Mask Mode

mask mode menuitem
Control/Mask Mode

mask/stretching
Stretching of the mask

matching entry
Searching in a database

memory requirements
Project/Statistic...

menuhelp
Fiasco’s Graphic User Interface

mouse
Fiasco’s Graphic User Interface

name of author
Project Options requester

narrator.device
Settings/Talking?

new menuitem
Project/New

fiasco 161 / 167

next record menuitem
Record/Next

online help
Requirements

open menuitem
Project/Open...

open menuitem in print window
Project/Open...

options menuitem
Project/Options...

options menuitem in print window
Project/Options...

options requester
Project Options requester

overwrite old project
F_Import

paste record menuitem
Record/Paste Record

pattern/escape
Patterns

pools
Requirements

previous record menuitem
Record/Previous

print
Printing a Database

print mask files
Print Mask Files

print menuitem
Project/Print...

print menuitem in print window
Project/Print

print/ARexx
Printing with ARexx

print/clipping
The Print Mask

print/editing the print mask
The Print Mask

fiasco 162 / 167

print/element requester
Print Element Requester

print/field elements
The Print Mask

print/formfeed elements
The Print Mask

print/internal print function
Internal Print Function

print/list
Internal Print Function

print/mask
Internal Print Function

print/mask files
Print Mask Files

print/options requester
Print Options Requester

print/printing
Internal Print Function

print/printing with TeX
Printing with TeX

print/standard mask
Internal Print Function

print/text elements
The Print Mask

print/window
The Print Window

printing with ARexx
Printing with ARexx

project file/size of
Datatypes fieldtype

project file/size of
Extern fieldtype

project file/size of
String Fieldtype

project options requester
Project Options requester

project/activating with ARexx
F_SelectProj

fiasco 163 / 167

projects/active
Active project

quit menuitem
Project/Quit

quotes and ARexx
ARexx and Fiasco in general

RawDoFmt()
Slider fieldtype

recalc list menuitem
List/Recalc List

record mode
Record Mode

record mode menuitem
Control/Record Mode

records
Records

records/cloning
Creating and working with Records

records/creating
Creating and working with Records

records/selecting in the list
List

relation requester
Relation requester

relations
Relations

relations/here
Creating Relations

relations/speed
Technical notes about Relations

relations/there
Creating Relations

relations/updating
Project/Reload Rels

relations/updating
Settings/Update Rels?

reload relations menuitem
Project/Reload Rels

fiasco 164 / 167

remove element menuitem
Element/Remove

remove field menuitem
Field/Remove Field

remove relation menuitem
Field/Remove Relation

replace
Replace

replace menuitem
Compare/Replace...

replace requester
Replace requester

RESULT
ARexx and Fiasco in general

save as menuitem
Project/Save As...

save as menuitem in print window
Project/Save as...

save menuitem
Project/Save

save menuitem in print window
Project/Save

save settings as menuitem
Settings/Save Settings as...

save settings menuitem
Settings/Save Settings

saving disk space
Relations

screenmode requester
Requirements

screenmode requester
Display Options Requester

search pattern
Searching in a database

search requester
Search requester

search requester/ARexx
Searching with ARexx

fiasco 165 / 167

searching several fields
Searching with ARexx

security requester menuitem
Settings/Security-Reqs?

security requesters
Creating and working with Records

service window
F_Progress

service window
The Service Window

service window menuitem
Control/ServiceWindow

service window/M
Using Marks

service window/marks
Using Marks

shift
Field requester

show all columns menuitem
List/Show all columns

show column menuitem
List/Show column...

show column requester
Show column requester

single quotes
ARexx and Fiasco in general

slider
Slider fieldtype

sort menuitem
Compare/Sort...

sort requester
Sort requester

special characters in im-export
How to Specify Special Characters

special host
Printing with ARexx

standard print mask
Internal Print Function

fiasco 166 / 167

statistic
Project/Statistic...

statistic menuitem
Project/Statistic...

stretching
Stretching of the mask

string
String Fieldtype

structure of Import/Export files
Structure of Import/Export files

talking
Settings/Talking?

talking menuitem
Settings/Talking?

tape deck gadgets
Mask Mode

TeX
Printing with TeX

text
Text fieldtype

there project
Creating Relations

time
Time fieldtype

toggle all marks menuitem
Record/Toggle all Marks

tolerance
Blurred Search

true
Boolean Fieldtype

unmark all records menuitem
Record/Unmark all Records

unmark record menuitem
Record/Unmark Record

update relations menuitem
Settings/Update Rels?

Use * as pattern menuitem
Settings/Use * as Pattern?

fiasco 167 / 167

use filter menuitem
Compare/Use Filter?

usermenu requester
Usermenu Requester

virtual fields
Standard Attributes

wait clock
F_LockGUI

write relations menuitem
Settings/Write Relations?

	fiasco
	Fiasco.guide
	Legal Things
	Giftware
	Filelist
	Introduction
	Features
	News
	Requirements
	Installation
	Quick Start
	Basic elements of a Database
	Records
	Fields
	Mask
	List
	Stretching of the mask
	Editing Modes in Fiasco
	Record Mode
	Mask Mode
	Creating and working with a Database
	Creating the Mask
	Creating and working with Records
	Converting Fields
	Using Marks
	Searching in a database
	Patterns
	Blurred Search
	Searching with ARexx
	Count
	Replace
	Filter
	Alternative Data Mechanisms
	Relations
	Creating Relations
	Technical notes about Relations
	Virtual Fields
	Printing a Database
	Internal Print Function
	The Print Mask
	Print Mask Files
	Printing with TeX
	Printing with ARexx
	Import and Export
	Structure of Import/Export files
	How to Specify Special Characters
	Importing of Data
	Exporting of Data
	Fieldtypes
	Standard Attributes
	String Fieldtype
	Integer Fieldtype
	Float Fieldtype
	Boolean Fieldtype
	Cycle fieldtype
	Slider fieldtype
	Date fieldtype
	Time fieldtype
	Extern fieldtype
	Datatypes fieldtype
	Text fieldtype
	Button fieldtype
	Bar fieldtype
	Fiasco's Graphic User Interface
	The Service Window
	Add
	Delete
	First
	Previous
	Next
	Last
	Active project
	Status
	Fieldtype
	Menus
	Project/New
	Project/Erase
	Project/Open...
	Project/Options...
	Project/Statistic...
	Project/Reload Rels
	Project/Save
	Project/Save As...
	Project/Import...
	Project/Export...
	Project/Print...
	Project/About...
	Project/Quit
	Record/Add Record
	Record/Duplicate Record
	Record/Delete Record
	Record/Delete all Records
	Record/Cut Record
	Record/Copy Record
	Record/Paste Record
	Record/Previous
	Record/Next
	Record/First Record
	Record/Last Record
	Record/Goto...
	Record/Mark Record
	Record/Unmark Record
	Record/Mark all Records
	Record/Unmark all Records
	Record/Toggle all Marks
	Field/Fieldtype
	Field/Add Field...
	Field/Edit Field...
	Field/Duplicate Field
	Field/Remove Field
	Field/Edit Relation...
	Field/Remove Relation
	Field/Convert Field...
	List/Hide column
	List/Show column...
	List/Show all columns
	List/Recalc List
	Compare/Find...
	Compare/Find next
	Compare/Find previous
	Compare/Replace...
	Compare/Count...
	Compare/Sort...
	Compare/Edit Filter...
	Compare/Use Filter?
	Compare/Mark...
	Compare/Filter to Marks
	Compare/Marks to Filter
	Control/Record Mode
	Control/Mask Mode
	Control/ServiceWindow
	Control/ListWindow
	Control/ARexx-Debug
	Settings/Create Icons?
	Settings/Create Backups?
	Settings/Write Relations?
	Settings/Update Rels?
	Settings/Use * as Pattern?
	Settings/Security-Reqs?
	Settings/Auto-Open ServiceWin?
	Settings/Dynamic ServiceWin?
	Settings/Talking?
	Settings/Display...
	Settings/Editor...
	Settings/Save Settings
	Settings/Save Settings as...
	Settings/Load Settings...
	User/Edit...
	The Print Window
	Project/Erase
	Project/Open...
	Project/Get from Mask
	Project/Get from List
	Project/Save
	Project/Save as...
	Project/Print
	Project/Options...
	Project/Exit
	Element/Element Type
	Element/Add...
	Element/Edit...
	Element/Duplicate
	Element/Remove
	Control/Edit Head
	Control/Edit Body
	Control/Edit Foot
	All Requesters
	Field requester
	Convert Field requester
	Search requester
	Replace requester
	Count requester
	Sort requester
	Filter requester
	Mark requester
	Usermenu Requester
	Project Options requester
	Goto requester
	Relation requester
	Show column requester
	Display Options Requester
	Import requester
	Export requester
	Print Options Requester
	Print Element Requester
	ARexx
	ARexx and Fiasco in general
	Index of all ARexx commands
	F_AboutReq
	F_ActivateField
	F_AddFieldReq
	F_AddRecord
	F_ClearProject
	F_CloseList
	F_CloseServiceWin
	F_ConvertField
	F_CountRecs
	F_CountReq
	F_DupRec
	F_Export
	F_FilterReq
	F_FindFirst
	F_FindNext
	F_FindPrev
	F_FindReq
	F_GetFieldAttributes
	F_GetFieldCont
	F_GetProjFullName
	F_GetProjName
	F_GetRecNum
	F_GotoFirstRec
	F_GotoNextRec
	F_GotoLastRec
	F_GotoPrevRec
	F_GotoRec
	F_GotoRecReq
	F_Import
	F_IsMarked
	F_IsVirgin
	F_LoadDTObject
	F_Locate
	F_LockGUI
	F_MakeVirgin
	F_MarkAllRecords
	F_MarkMatch
	F_MarkRecord
	F_NewProject
	F_OpenList
	F_OpenProject
	F_OpenProjectReq
	F_OpenServiceWin
	F_OptionsReq
	F_Progress
	F_Quit
	F_RemAllRecords
	F_RemRecord
	F_RequestChoice
	F_RequestField
	F_RequestFile
	F_RequestNumber
	F_RequestString
	F_ResetStatus
	F_SaveProject
	F_SaveProjectReq
	F_SaveSettings
	F_SelectProj
	F_SetFieldCont
	F_SetMode
	F_SetSearchField
	F_SetSearchPat
	F_SetStatus
	F_Sort
	F_SortReq
	F_ToggleAllMarks
	F_UnlockGUI
	F_UnmarkAllRecords
	F_UnmarkRecord
	F_UserCommand
	F_VirtualMode
	Example Projects
	Addresses
	Datatypes Demo
	FamilyTree
	Videos
	Picture Database
	FAQs Database
	All Searchpatterns
	Relation Checklist
	Implementation of the Clipboard support
	Bugs
	To do
	How to get contact
	Index

